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Fig. 1. HyperGAN-CLIP and its Applications. Introducing HyperGAN-CLIP, a flexible framework that enhances the capabilities of a pre-trained StyleGAN

model for a multitude of tasks, including multiple domain one-shot adaptation, reference-guided image synthesis and text-guided image manipulation. Our

method pushes the boundaries of image synthesis and editing, enabling users to create diverse and high-quality images with remarkable ease and precision.

Generative Adversarial Networks (GANs), particularly StyleGAN and its

variants, have demonstrated remarkable capabilities in generating highly

realistic images. Despite their success, adapting these models to diverse tasks

such as domain adaptation, reference-guided synthesis, and text-guided ma-

nipulation with limited training data remains challenging. Towards this

end, in this study, we present a novel framework that signi�cantly extends

the capabilities of a pre-trained StyleGAN by integrating CLIP space via

hypernetworks. This integration allows dynamic adaptation of StyleGAN to

new domains de�ned by reference images or textual descriptions. Addition-

ally, we introduce a CLIP-guided discriminator that enhances the alignment

between generated images and target domains, ensuring superior image

quality. Our approach demonstrates unprecedented �exibility, enabling text-

guided image manipulation without the need for text-speci�c training data

and facilitating seamless style transfer. Comprehensive qualitative and quan-

titative evaluations con�rm the robustness and superior performance of our

framework compared to existing methods.
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1 INTRODUCTION

Generative Adversarial Networks (GANs) [Goodfellow et al. 2014]

have dramatically advanced the synthesis of highly realistic images

through novel ideas such as progressive growth [Karras et al. 2018]

and style-based generators [Karras et al. 2021, 2019, 2020]. These

techniques enable the training of cutting-edge GANs on large, high-

resolution datasets by exploiting semantically rich latent spaces for

precise style manipulation. However, their reliance on substantial

training and large datasets poses signi�cant challenges in data-

scarce environments.

Addressing the data scarcity issue, traditional domain adaptation

techniques for GANs typically involve �ne-tuning pre-trained gen-

erators with limited samples from the target domain. While these

methods enhance model applicability, they often struggle with a

trade-o� between the �delity of domain-speci�c attributes and the

quality of images generated from the source domain. Additionally,

methods that utilize multi-modal CLIP embeddings for guided im-

age generation and manipulation [Gal et al. 2022; Zhu et al. 2022]

are constrained by the attributes present during training [Baykal
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et al. 2023; Lyu et al. 2023; Wei et al. 2022], and they face di�culties

with out-of-distribution images. Per-edit optimization techniques

[Chefer et al. 2022; Patashnik et al. 2021; Xia et al. 2021], though

highly �exible, incur substantial computational costs at inference.

In response to these challenges, we propose HyperGAN-CLIP,

a uni�ed framework that not only addresses the limitations of exist-

ing domain adaptation methods but also expands their functionality

to include reference-guided image synthesis and text-guided image

manipulation. This comprehensive framework utilizes a single ex-

ample from each target domain to e�ciently adapt pre-trained GAN

models, eliminating the need for task-speci�c models. Central to

HyperGAN-CLIP is a conditional hypernetwork that dynamically

adjusts the generator’s weights based on domain-speci�c embed-

dings from images or text, facilitated by CLIP embeddings.

The strategic use of our hypernetwork module design results in a

duplicated generator network that produce domain-speci�c features

via CLIP embeddings. These features are seamlessly integrated into

the original generator through a residual feature injection mecha-

nism, which not only preserves the identity of the source domain but

also enhances the robustness of the generator by preventing mode

collapse. This mechanism e�ectively addresses common challenges

in domain adaptation, and enables our framework to adapt to di�er-

ent domains without requiring separate training sessions for each

one. Unlike prior approaches, CLIP-oriented hypernetworks e�ec-

tively understand and leverage the common characteristics shared

among target domains during adaptation, leading to improved re-

sults. Moreover, they enhance our framework’s capabilities by al-

lowing the use of images and text prompts as guidance, making

it well-suited for tasks like reference-guided image synthesis and

text-guided image manipulation.

In summary, the key contributions of our work are as follows:

• Wepropose a conditional hypernetwork that e�ectively adapts

a pre-trained StyleGAN generator to multiple domains with

minimal data, maintaining high-quality synthesis image syn-

thesis without increasing model size.

• Our novel design o�ers more �exibility and supports a wide

range of synthesis and editing tasks, including reference-

guided image synthesis and text-guided manipulation, with-

out any need for training separate models for each task.

• We conduct extensive evaluations across multiple domains

and datasets, demonstrating our framework’s e�ectiveness

and adaptability compared to existing methods.

Our code and models are publicly available at the project website:

https://cyberiada.github.io/HyperGAN-CLIP.

2 RELATED WORK

2.1 State-of-the-art in GANs

Field of image synthesis and editing has experienced signi�cant ad-

vances through the use of generative adversarial networks (GANs)

[Goodfellow et al. 2014]. These advances have been by innovative ar-

chitectural and training strategies that yield highly realistic images.

Notably, PGGAN [Karras et al. 2018] introduces progressive resolu-

tion enhancement, while BigGAN [Brock et al. 2019] scales up im-

age synthesis with larger batch sizes and introduces techniques like

residual connections and the truncation trick for improved quality.

StyleGAN [Karras et al. 2019] and its successors, StyleGAN2 [Karras

et al. 2020] and StyleGAN3 [Karras et al. 2021], further enhance

photorealism and reduce artifacts by using a generator inspired

by style transfer literature [Gatys et al. 2015]. StyleSwin [Zhang

et al. 2022a] and GANformer [Hudson and Zitnick 2021] incorpo-

rate transformers or bipartite structures to generate complex images

with multiple objects.

StyleGAN is particularly acclaimed for its rich, semanticallymean-

ingful latent space, which enables users to �nely manipulate image

attributes. GAN inversion, a common technique to embed real im-

ages into this space, can be accomplished through methods such as

direct optimization [Abdal et al. 2019, 2020; Creswell and Bharath

2019; Tewari et al. 2020], learning-based approaches [Alaluf et al.

2021; Bai et al. 2022; Bau et al. 2019a; Richardson et al. 2021; Tov

et al. 2021; Zhu et al. 2020], or hybrids [Bau et al. 2019b; Zhu et al.

2016]. These techniques allow for exploration and manipulation of

the latent space to discover and apply meaningful editing directions,

often in an unsupervised manner [Härkönen et al. 2020; Shen and

Zhou 2021; Voynov and Babenko 2020], or by leveraging image-level

attributes [Abdal et al. 2021; Shen et al. 2020a; Wu et al. 2021].

2.2 Domain Adaptation for GANs

Few-shot GAN domain adaptation involves adjusting pre-trained

models to new image domains with limited data, often leading to

challenges such as over�tting and mode collapse. To address these

challenges, several novel strategies have been implemented. Ojha

et al. [2021] employ a cross-domain distance consistency loss to

maintain diversity while transferring to new domains. Back [2021]

�ne-tunes StyleGAN2 by freezing initial style blocks and adding

a structural loss to minimize deviations between the source and

target domains. DualStyleGAN [Yang et al. 2022] employs distinct

style paths for content and portrait style transfer, while RSSA [Xiao

et al. 2022] compresses the latent space for better domain align-

ment. StyleGAN-NADA [Gal et al. 2022] uses CLIP embeddings for

directional guidance during adaptation, enhancing the �delity of

transfers. Mind-the-Gap [Zhu et al. 2022] introduces regularizers

to reduce over�tting. JoJoGAN [Chong and Forsyth 2022] learns a

style mapper from a single example using GAN inversion and Style-

GAN’s style-mixing property. DiFa [Zhang et al. 2022b] leverages

CLIP embeddings for both global and local-level adaptation, and

employs selective cross-domain consistency to maintain diversity.

OneshotCLIP [Kwon and Ye 2023] employs a two-step training strat-

egy involving CLIP-guided latent optimization and generator �ne-

tuning with a novel loss function to ensure CLIP space consistency.

DynaGAN [Kim et al. 2022a] modulates the pre-trained generator’s

weights for dynamic adaptation. HyperDomainNet [Alanov et al.

2022] employs hypernetworks to predict weight modulation param-

eters, combined with regularizers and a CLIP directional loss for

multi-domain adaptation. Adaptation-SCR [Liu et al. 2023] proposes

a spectral consistency regularizer to alleviate mode collapse and

preserve diversity and granularity adaptive regularizer to balance

diversity and stylization during domain adaptation. Our method

extends these studies by using a hypernetwork to modulate a Style-

GAN2 generator’s weights, integrating missing domain-speci�c

features into a frozen generator for better identity preservation
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and minimal distortion. Unlike the direct tuning in DynaGAN, our

approach uses CLIP embeddings to generate and inject features,

signi�cantly di�ering from StyleGAN-NADA’s �netuning approach,

which risks over�tting. Moreover, our hypernetwork is conditioned

on multimodal CLIP embeddings, broadening our model’s applica-

tion from domain adaptation to reference-guided image synthesis

and text-guided manipulation.

2.3 Reference-Guided Image Synthesis

Reference-guided image synthesis combines the content of one im-

age with the style of another, a process that has evolved signi�cantly

from early neural style transfer techniques like [Gatys et al. 2015],

which often su�ered from style-artifacts due to inadequate han-

dling of local semantic details. To improve upon these limitations,

WCT2 [Yoo et al. 2019] introduced wavelet-corrected transfers that

better preserve structural integrity and local feature statistics. Deep-

FaceEditing [Chen et al. 2021] further re�nes this approach by using

local disentanglement and global fusion to more e�ectively sepa-

rate and combine geometric and stylistic elements. BlendGAN [Liu

et al. 2021b] adopts a self-supervised method, developing a style

encoder that integrates a weighted blending module for seamless

style integration. TargetCLIP [Chefer et al. 2022] uses the Style-

GAN2 latent space to identify desired editing direction that align

with reference images, optimizing the CLIP similarity with the tar-

get. NeRFFaceEditing [Jiang et al. 2022] utilizes appearance and

geometry decoders in a tri-plane-based neural radiance �eld, using

an AdaIN-based approach for enhanced decoupling of appearance

and geometry. Di�erent from these methods, our HyperGAN-CLIP

model uses CLIP embeddings to dynamically control the modula-

tion weights and decode the StyleGAN2 latent vectors, o�ering a

more enhanced �exibility and precision in synthesis process. With

the growing interest in di�usion models, there have been e�orts

to guide the denoising di�usion process using reference images as

well. For example, di�usion frameworks in [Balaji et al. 2022; Bansal

et al. 2024] allow image generation to be steered by the style of a

reference image, while the content is speci�ed by a text prompt.

MimicBrush [Chen et al. 2024] builds on these works by enabling

local semantic edits on input images using a reference image. This is

achieved by automatically extracting the semantic correspondence

between the input and reference images.

2.4 Text-Guided Image Manipulation

Text-guided image manipulation modi�es images based on textual

descriptions while preserving their structure and incorporating the

speci�ed attributes. Recent studies leverage CLIP [Radford et al.

2021], which provides a shared latent space for images and text,

enabling precise text-driven editing. StyleCLIP-LO [Patashnik et al.

2021] optimizes latent codes to generate target images aligned

with textual prompts. StyleCLIP-LM [Patashnik et al. 2021] pre-

dicts residual latent codes based on the CLIP similarity of attributes

and output images. StyleCLIP-GD [Patashnik et al. 2021] maps text

prompts to global directions in the original StyleGAN space, while

StyleMC [Kocasari et al. 2021] explores global directions within

StyleGAN2’s lower dimensional S space to enhance this alignment.

HairCLIP [Wei et al. 2022] modulates latent codes for speci�c style

attributes like hair color, using text for �ne-grained control, op-

timizing similarity in the CLIP space. DeltaEdit [Lyu et al. 2023]

trains latent mappers solely on images using semantically aligned

Δ-CLIP space, enabling manipulations guided by reference textual

descriptions or images. CLIPInverter [Baykal et al. 2023] conditions

the inversion stage on textual descriptions, obtaining manipulation

directions as residual latent codes through a CLIP-guided adapter

module. In di�usion-based synthesis methods, Di�usionCLIP [Kim

et al. 2022b] modi�es input images by �rst converting them to noise

through forward di�usion and then guiding the reverse di�usion

process using CLIP similarity to obtain the �nal image. Plug-and-

play [Tumanyan et al. 2022] enhances image synthesis by injecting

image feature maps from a latent di�usion model into the denois-

ing process guided by textual descriptions. Pix2Pix-Zero [Parmar

et al. 2023] maintains the structure of the original image with cross-

attention guidance and applies targeted edits using an edit-direction

embedding to modify speci�c objects. InstructPix2Pix [Brooks et al.

2023] and MagicBrush [Zhang et al. 2023] enable semantic image

editing based on user-provided textual instructions. ZONE [Li et al.

2024] extends these approaches to zero-shot local image editing,

utilizing the localization capabilities within pre-trained instruction-

guided di�usion models.

2.5 Hypernetworks

Hypernetworks [Ha et al. 2017] are neural networks designed to

predict or modulate the weights of another network, known as the

primary network. This ability enhances the �exibility and general-

izability of models. For instance, HyperInverter [Dinh et al. 2022]

employs hypernetworks to adjust encoder parameters, while Hyper-

Style [Alaluf et al. 2022] uses them to adapt the StyleGAN generator,

improving representation of out-of-domain images. DynaGAN [Kim

et al. 2022a] and HyperDomainNet [Alanov et al. 2022] use hy-

pernetworks for dynamic weight modulation in few-shot domain

adaptation. Building on these, our method enhances StyleGAN’s

adaptability by integrating hypernetworks with CLIP embeddings

to modulate weights according to di�erent modalities, letting our

framework be used for both domain adaptation, reference-guided

image synthesis and text-guided image manipulation.

3 APPROACH

HyperGAN-CLIP represents a uni�ed architecture built upon Style-

GAN2 [Karras et al. 2020], designed to address a wide range of gen-

erative tasks such as domain adaptation, reference-guided image

synthesis, and text-guided image manipulation. In Sec. 3.1, we intro-

duce the core components of HyperGAN-CLIP. Then, in Sec. 3.2, we

describe the training procedures employed to deploy HyperGAN-

CLIP across the various generative and editing tasks.

3.1 HyperGAN-CLIP

As shown in Fig. 2, our HyperGAN-CLIP framework dynamically ad-

justs the weights of a StyleGAN2 generator pre-trained on a source

domain using input images or text prompts. These versatile inputs

can represent a target domain for adaptation, serve as an in-domain

reference for attribute transfer, or function as a textual description

for editing. This �exibility allows our framework to generate images
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Fig. 2. Overview of HyperGAN-CLIP. This framework employs hypernetwork modules to adjust StyleGAN generator weights based on images or text

prompts. These inputs facilitate domain adaptation, a�ribute transfer, or image editing. The modulated weights blend with original features to produce images

that align with specified domains or tasks like reference-guided synthesis and text-guided manipulation, while maintaining source integrity.

that not only align with target domain characteristics but also sup-

port both reference-guided image synthesis and text-guided image

manipulation, all while preserving the source domain’s integrity.

At the core of HyperGAN-CLIP is a uni�ed adaptation strategy

that employs a single architecture to handle various generative tasks

dynamically. This strategy centers around a hypernetwork module

that interacts with each layer of a pre-trained StyleGAN generator

to produce task-speci�c adaptations. However, rather than directly

updating the original generator network, our approach involves up-

dating the weights of a duplicated generator network. This network

generates the missing features based on the provided CLIP [Radford

et al. 2021] embeddings of the conditioning inputs. These features

are then integrated into the original, frozen generator network via

a residual feature injection module, ensuring the preservation of

the source domain’s integrity.

More formally, the �nal features of a layer 8 , denoted by �
′

8 , are

estimated by injecting the scaled down modulated features � ∗8 into

the original features �8 , as given below:

�
′

8 = �8 + [ · � ∗8 , (1)

where [ is the scaling parameter. By this way, the �nal features

remain close to the original distribution at the beginning of the

training process. The original intermediate features, �8 , are derived

from the preceding layer’s output �
′

8−1 using:

�8 = �
′

8−1 ⊛ \8 + 18 , (2)

with \8 and 18 respectively representing the layer weights and the

layer bias of the pre-trained StyleGAN. Meanwhile, the modulated

features, � ∗8 , are computed using the weights \∗8 modulated by the

proposed CLIP-conditioned hypernetwork module as follows:

� ∗8 = �8−1 ⊛ \
∗
8 + 18 , (3)

where the modulated weights, \∗8 are de�ned as

\∗8 = X8 · 5 (q8 + Δq8 , B8 ) . (4)

Here, 5 represents the composite function of cascaded modulation

and demodulation operations, B8 is the style vector transformed

from the latent codeF of the source image, and q8 denotes the con-

volutional weights of the pre-trained generator at layer 8 . Notably,

the modulation parameters Δq8 and X8 , the task-speci�c weight bias

and the channel-wise scale parameter, are dynamically predicted by

our proposed CLIP-conditioned hypernetwork module �8 (·), as:

Δq8 , X8 = �8 (Δ2) , (5)

where Δ2 is the Δ-CLIP embedding [Lyu et al. 2023] representing the

di�erence between the CLIP embedding of the conditioning input

(an image or a text prompt) and the CLIP embedding of the source

image. Each hypernetwork module is composed of two individual

fully-connected layers that generate a�ne transformation param-

eters for each convolution layer, one for the weight bias matrix

Δq8 and the other for the weight scaling parameter X8 , respectively.

Hence, the number of parameters introduced by the hypernetwork

module depends on the length of Δ-CLIP embeddings and the size of

the corresponding convolutional layer, and often very less compared

to the base generator network.

Previous studies have shown that CLIP embeddings are e�ective

at capturing the stylistic elements of reference images [Balaji et al.

2022; Bansal et al. 2024]. Utilizing Δ-CLIP embeddings allows our

model to focus solely on the attributes absent in the source domain,
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thereby eliminating any redundant information. This approach cen-

ters the input embeddings to the hypernetwork around zero, sim-

plifying the training process. Moreover, our �ndings suggest that

using raw CLIP embeddings directly can signi�cantly change the

identity and noticeably degrade image quality. A detailed analysis

is given in the Supplementary Material. Another key outcome of

using CLIP embeddings is that it allows for adapting the pre-trained

generator to multiple domains with just a single network model.

3.2 Training HyperGAN-CLIP

Consider G as a synthetic image generated from noise or a natural

image from the source domainDsource. In the context of StyleGAN’s

architecture, G is produced by the mapping G = �source (I), where I

is a latent vector either sampled from a noise distribution or derived

using a GAN inversion technique. HyperGAN-CLIP is designed

to adapt the pre-trained generator �source into a modulated gen-

erator �★. This adaptation enables �★ to handle multiple tasks:

multiple domain adaptation, reference-guided image synthesis, and

text-guided image manipulation. It accomplishes this by leveraging

additional inputs, which may be speci�c images or text prompts,

to customize the generator’s output to the requirements of these

varied applications. We train our HyperGAN-CLIP framework by

minimizing a multi-task loss L, de�ned as:

L = _1LCLIP + _2LCLIP-Across + _3LCLIP-Within + _4LcGAN

+_5LContrastive + _6LID + _7LL2 + _8LLPIPS (6)

where _∗ depicts the corresponding regularization coe�cients.

3.2.1 CLIP-based Losses. For domain adaptation, the core objective

is to align the semantics of the adapted domain images with those

of a target domain image Gtarget. We de�ne Isource as the latent code

corresponding to Gtarget inverted to the source domain, where it gen-

erates G�xed, the source domain equivalent of Gtarget. The adapted

generator aims to use the same Isource to produce an adapted image

Grecon. Leveraging the CLIP embeddings of the target images, we

enforce semantic consistency through the CLIP similarity loss:

LCLIP = 1 − ⟨2recon, 2target⟩ , (7)

where 2target and 2recon represent the CLIP embeddings of Gtarget
and Grecon, respectively, and ⟨·, ·⟩ denotes the cosine similarity.

Global CLIP losses can lead to mode collapse and content loss [Gal

et al. 2022]. Hence, as explored in [Zhu et al. 2022], we addition-

ally adopt the following directional CLIP losses that measure the

semantic shift within and across domains in CLIP space:

LCLIP-Across = 1 − ⟨Δ2sample,Δ2�xed⟩ , (8)

LCLIP-Within = 1 − ⟨Δ2source,Δ2target⟩ . (9)

To compute these losses, we begin by generating an image Gsample

using the frozen generator �source from a randomly sampled la-

tent code. This image is then adapted to the target domain using

�★, resulting in Gtrained. Semantically, we anticipate that the dif-

ferences between the source and target domains, captured by the

Δ-CLIP embeddings Δ2sample = CLIP(Gtrained) − CLIP(Gsample) and

Δ2�xed = CLIP(Gtarget)−CLIP(G�xed), should align as they represent

the transformation induced by domain adaptation. Additionally, to

ensure the adaptation preserves essential semantic features across

the transformation, the di�erences between source and adapted

images, as measured by Δ2source = CLIP(G�xed) − CLIP(Gsample)

and Δ2target = CLIP(Gtarget) − CLIP(Gtrained)), should also align.

For reference-guided image synthesis, HyperGAN-CLIP utilizes

a re�ned methodology with in-domain data, adjusting StyleGAN’s

weights to faithfully replicate the style of target images. By lever-

aging pairs of source and target images from the source dataset,

we e�ectively cover a broad distribution of CLIP embeddings, en-

suring robust alignment between the CLIP space and StyleGAN

image space. Speci�cally, we rede�ne LCLIP-Across using the aver-

age StyleGAN image as the anchor image G�xed, departing from the

use of inverted target images typical in domain adaptation. During

training, Gtarget and Gsample are randomly sampled. Furthermore,

for LCLIP-Within, we substitute Gtarget with Grecon to enhance iden-

tity and content preservation. Please refer to the Supplementary

Material for the graphical illustrations of these directional losses.

Notably, HyperGAN-CLIP trained for reference-guided image

synthesis is also capable of performing text-guided image editing by

using the Δ-CLIP embedding Δ2text = CLIP(Ctarget) − CLIP(Csource)

to modulate the generator weights, with Ctarget representing the

input text prompt and Csource denoting any text matching the source

image. In our experiments, we use a generic prompt like “face” for

Csource, but it can be replaced with a more �ne-grained one.

3.2.2 CLIP-conditioned discriminator loss. To preserve sample qual-

ity during domain adaptation, we introduce an adversarial loss

LcGAN with a discriminator conditioned on CLIP embeddings. This

discriminator, modeled after [Kang et al. 2023; Kumari et al. 2022],

uses a frozen CLIP vision transformer backbone and only trains the

outermost head layers. It dynamically measures the di�erence be-

tween source and target domain distributions. To deal with the data

scarcity (we only have a single image per each target domain), we

use di�erentiable augmentation [Zhao et al. 2020]. The conditioning

of the discriminator on CLIP embeddings, implemented using a

projection discriminator [Miyato and Koyama 2018], ensures that

the generated images align with the target domain characteristics

and accelerates training convergence and prevents mode collapse.

3.2.3 Contrastive Adaptation Loss. To ensure that images generated

from a target domain distinctly di�er from those of other domains,

we employ an adaptation loss LContrastive encouraging the network

to learn domain-speci�c transformations. Inspired by [Kim et al.

2022a], this contrastive loss enhances similarity relationships, en-

suring positive pairs (same domain) show higher similarity, while

negative pairs (di�erent domains) show less. Formally, it is given as:

LContrastive = − log
exp(;pos)

exp(;pos) + Σ 91[ 9≠: ] exp(;
9
neg)

(10)

with ;pos, ;
9
neg representing the cosine similarities of positive and

negative pairs, respectively:

;pos =
〈

CLIP(G:target),CLIP(G
:
recon)

〉

(11)

;
9
neg =

〈

CLIP(Aug(G
9
target)),CLIP(G

:
recon)

〉

(12)
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where Aug(·) applies horizontal-�ip and color-jitter augmentations

to enhance training stability [Liu et al. 2021a]. This loss is calculated

over a minibatch of 4 target domains for diverse domain learning.

3.2.4 Identity Loss. To preserve source identity when adapting to

a target domain, we implement an identity similarity loss designed

to maximize the cosine similarity between the image features from

the source and target domains:

LID = 1 − ⟨'(Gsample), '(Gtrained)⟩ , (13)

where '(·) extracts deep features using the ArcFace model [Deng

et al. 2022], speci�cally trained for face recognition.

3.2.5 Perceptual and Reconstruction Losses. To complement the

CLIP loss LCLIP, we align Grecon with Gtarget using the L2 and LPIPS

losses:

LL2 = ∥Gtarget − Grecon∥2 (14)

LLPIPS = ∥� (Gtarget) − � (Grecon)∥2 (15)

where � (·) represents AlexNet [Krizhevsky et al. 2012] features.

4 EXPERIMENTS

4.1 Training and Implementation Details

We use the Adam optimizer with V1 = 0.0 and V2 = 0.99. We set

the learning rate to 0.002 and the batch size to 4. For CLIP based

losses, we use ViT-B/16 and ViT-B/32 CLIP encoder models and add

their results as done in MTG. We use the ViT-B/16 CLIP encoder

while modulating the generator. The scaling parameter for the mod-

ulated features is set as [ = 0.1 to prevent a large shift in feature

distribution of the pretrained generator, ensuring stable training

from the start. We empirically set the weights for the individual loss

terms as _1 = 30, _2 = 1.5, _3 = 0.5, _4 = 0.2, _5 = 1.0, _6 = 3.0,

_7 = 8.0, and _8 = 12.0. Each minibatch includes 4 randomly sam-

pled target domain images Gtarget and 4 source images Gtrained. For

domain adaptation and reference guided image synthesis, to �nd

G�xed in the source domain corresponding to a target image, we

use e4e inversion [Tov et al. 2021]. However, instead of using the

inversion directly, we bring it closer to the mean latent by applying

latent truncation. This prevents the inversion to lie in an out-of-

distribution region and avoids G�xed and Gtarget to be too close, and

thus limiting meaningful editing directions.

4.2 Domain Adaptation

We conduct two distinct experiments. First, we adapt a StyleGAN2

model, pre-trained on the FFHQ dataset [Karras et al. 2019], to 101

new domains introduced in the expanded version of StyleGAN-

NADA [Gal et al. 2022]. The training data was generated using

the extended StyleGAN2 model provided by the authors of Do-

main Expansion [Nitzan et al. 2023]1. For each target domain, we

sample a single image using the extended model, and use these

sampled images to train our HyperGAN-CLIP model for multiple

domain adaptation. Second, we use the AFHQ dataset to expand

a StyleGAN2 model pre-trained on Cat images to 52 other animal

1The NADA-expanded model used in our experiments is available at https://github.
com/adobe-research/domain-expansion/tree/main.

domains (including 22 dog breeds and 30 wildlife animals repre-

sented by 7 cheetah, 6 tiger, 6 lion, 7 fox and 4 wolf images). For

each target domain, we select a single image and use these samples

to train HyperGAN-CLIP accordingly. We compare HyperGAN-

CLIP to state-of-the-art GAN domain adaptation models, including

Mind-the-GAP [Zhu et al. 2022], StyleGAN-NADA [Gal et al. 2022],

HyperDomainNet [Alanov et al. 2022], DynaGAN [Kim et al. 2022a],

and Adaptation-SCR [Liu et al. 2023]. Each model is trained in the

one-shot setting using the same training data. Notably, Mind-the-

GAP, StyleGAN-NADA, and Adaptation-SCR require separate mod-

els for each target domain, whereas HyperDomainNet, DynaGAN,

and HyperGAN-CLIP can model multiple domains with a single

uni�ed model. To quantitatively assess the quality and �delity of

the generated images, we adopt the widely used Fréchet Inception

Distance (FID) score [Heusel et al. 2017] along with the Quality and

Diversity metrics suggested in [Alanov et al. 2022]. Details of these

evaluation metrics are given in the Supplementary Material.

In Fig. 3, we present sample images generated by the evaluated

domain-adaptation techniques on the AFHQ and FFHQ datasets.

Each sample includes the source image, the corresponding target

domain training image and the synthesized outputs. Mind-the-Gap

struggle to fully capture the visual characteristics of the target

domains, often producing visually poor results. HyperDomainNet

appears to have failed in learning very diverse domains, which leads

to low-�delity outcomes. While StyleGAN-NADA and Adaptation-

SCR achieve better quality, they tend to slightly over�t to speci�c

features of the representative target domain. DynaGAN shows im-

proved performance over these models but sometimes generates

unnatural and slightly distorted results, particularly in animal do-

mains. It fails to fully re�ect key features of the target domain,

e.g., it does not generate desired small animal ears in the �rst row.

Compared to DynaGAN, HyperGAN-CLIP better preserves source

content. By leveraging CLIP-guided hypernetwork modules, it pro-

duces images with remarkable visual �delity and e�ectively captures

the essence of the target domains, as validated by the FID scores in

Table 1. Moreover, the Diversity scores highlight that our approach

demonstrates higher variability among the adapted images. Addi-

tional demonstrations of our model’s ability to blend domains and

perform semantic edits are given in Fig.4. In the Supplementary

Material, we provide additional comparisons, explore controllable

image generation in more detail, and present an ablation study.

Moreover, we demonstrate that our approach can perform zero-shot

domain adaptation relatively well on novel domains that are not

semantically very di�erent from the domains used during training.

4.3 Reference-Guided Image Synthesis

In this experiment, our objective is to synthesize a new image that

combines the identity of a source image with the style of a target

image, as represented by its CLIP embedding. For quantitative anal-

ysis, we use the test set of the CelebA-HQ dataset [Lee et al. 2020],

which comprises a total of 6000 diverse images, as the source and

the target images. We assign a di�erent target image to each source

image by making sure that the same image is not used as source

and target. We invert the source images to the latent space using

an e4e encoder [Tov et al. 2021] pre-trained on the FFHQ dataset.
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Source                   Target                StyleGAN-NADA  Adaptation-SCR    Mind-The-Gap   HyperDomainNet DynaGAN Ours

Fig. 3. Comparison against the state-of-the-art few-shot domain adaptation methods. Our proposed HyperGAN-CLIP model outperforms competing

methods in accurately capturing the visual characteristics of the target domains.

Domain 1 Domain 2 Hybrid

(a) Domain mixing. Our approach can fuse multiple domains to

create novel compositions. By averaging and re-scaling the CLIP

embeddings of two target domains, we can generate images that

blend characteristics from both.

Adapted +Age +Smile +Pose

(b) Semantic editing in target domains. Since latent mapper is kept intact, our

approach allows for using existing latent space discovery methods to perform semantic

edits. We manipulate two sample face images from adapted domains by playing with

age, smile, and pose using InterfaceGAN [Shen et al. 2020b].

Fig. 4. Capabilities of HyperGAN-CLIP in blending domains and performing semantic edits within adapted domains.
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Table 1. �antitative results for multi domain adaptation. HyperGAN-

CLIP demonstrates strong performance in adapting characteristics of multi-

ple target domains with a single model. The best and second best models

are indicated in bold and underlined, respectively.

AFHQ FFHQ

Method FID↓ Qual↑ Div↑ FID↓ Qual↑ Div↑

Mind-The-Gap 72.90 0.93 0.04 45.93 0.73 0.10

StyleGAN-NADA 71.15 0.93 0.04 49.48 0.90 0.04

Adaptation-SCR 70.84 0.92 0.03 45.88 0.59 0.06

HyperDomainNet 105.90 0.78 0.05 100.92 0.67 0.11

DynaGAN 72.16 0.94 0.02 28.94 0.83 0.14

Ours 71.93 0.94 0.04 24.74 0.81 0.16

The inverted latents are fed to our framework along with the CLIP

embedding obtained from the target image to synthesize the �nal

output. We compare HyperGAN-CLIP against BlendGAN [Liu et al.

2021b], TargetCLIP-O [Chefer et al. 2022], TargetCLIP-E [Chefer

et al. 2022], and MimicBrush [Chen et al. 2024]. While BlendGAN

and TargetCLIP-E are encoder-based approaches, TargetCLIP-O em-

ploys a direct optimization scheme, and MimicBrush is a di�usion

based approach (the whole image region is used as the input mask).

Our approach, apart from these studies, is based on modulating the

StyleGAN generator via CLIP-guided hypernetworks.

In Fig. 5, we present sample qualitative comparisons. Sample

source-target pairs show a diverse range of visual characteristics

in terms of gender, age, hair color, ethnicity. BlendGAN tends to

produce cartoon-like outputs that lack naturalness. Optimization-

based TargetCLIP-O shows superior performance compared to its

encoder-based counterpart TargetCLIP-E in maintaining identity

while incorporating the desired style changes depicted in the target

image. MimicBrush directly copies the target face onto the source

pose, failing to transfer just the style and often resulting in unrealis-

tic outputs. Notably, HyperGAN-CLIP gives superior performance

in seamlessly transferring the attributes from the chosen target faces

to the source faces while preserving identity to a greater extent than

the competing methods. These results a�rm the e�ectiveness of our

approach in generating visually compelling outputs with enhanced

�delity and plausibility. Table 2 shows the quantitative results. Our

method achieves competitive results in terms of FID, better than

TargetCLIP-O, which performs latent optimization for each target.

This highlights our method’s ability to generate high-quality and

faithful images. Moreover, our approach outperforms competing

methods in preserving the identity of the source image, as indi-

cated by the ID similarity scores. Additionally, our method excels

in CLIP semantic similarity, a�rming its capability to capture the

semantics of the target image in the synthesized results. Overall,

our approach strikes a favorable balance across multiple evaluation

metrics, showing its e�ectiveness in photo-realistic image synthesis

and preserving key visual attributes.

One key limitation of both our proposed method and the com-

petitive approaches is that, in some cases, they struggle to transfer

�ne attributes from reference images because their global image

embeddings lack the speci�city needed to capture these details. To

Table 2. �antitative results for reference-guided image synthesis.

HyperGAN-CLIP outperforms the existing models, generating high-quality

images. It e�ectively preserves source identity while transferring the se-

mantic details of the target images. The best and second-best models are

highlighted in bold and underlined, respectively.

Method FID↓ ID (source)↑ ID (target)↓ CLIP Sim.↑

BlendGAN 14.54 34.58±9.91 2.63±9.53 77.08±7.17

TargetCLIP-O 11.26 50.77±16.61 17.78±10.54 77.16±9.71

TargetCLIP-E 29.48 41.51±11.61 26.94±10.40 72.41±8.01

MimicBrush 37.06 11.19±10.43 65.91±14.65 82.69±7.29

Ours 8.73 78.73±6.01 10.51±10.04 90.78±3.80

address this issue, we explore a strategy that combines the CLIP

embeddings of reference images with those of text prompts de-

signed to capture speci�c target attributes. By leveraging CLIP’s

capability to encode both visual and textual data, we re�ne the ref-

erence image embedding by incrementally adding the embedding

of the target attribute, modulated by an U parameter, following the

formula CLIP(Gtarget) + U CLIP(Ctarget). As demonstrated in Fig. 6,

this strategy enhances the editing process by allowing �ne-tuned

adjustments to speci�ed attributes, resulting in more accurate and

detailed image modi�cations based on the reference image.

4.4 Text-Guided Image Manipulation

In this experiment, we show the versatility of our proposed frame-

work by demonstrating its ability to manipulate input images based

on target textual descriptions. For the quantitative analysis, we

leverage the CelebA dataset’s test set [Liu et al. 2015] along with its

attribute annotations. We select attributes that are absent from the

images and construct target descriptions that prompt the desired

attribute manipulation. Leveraging a pre-trained e4e model [Tov

et al. 2021], we perform an image-to-latent-space inversion, gen-

erating latent representations of the input images. These inverted

images serve as inputs to our framework. To condition the synthesis

process, we utilize Δ-CLIP embeddings, which capture the discrep-

ancy between the CLIP embeddings of the target description and

the input image. We perform a comprehensive comparison of our

method against several state-of-the-art text-guided image manip-

ulation approaches. These include TediGAN-B [Xia et al. 2021],

StyleCLIP-LO [Patashnik et al. 2021], StyleCLIP-GD [Patashnik

et al. 2021], HairCLIP [Wei et al. 2022], DeltaEdit [Lyu et al. 2023],

and CLIPInverter [Baykal et al. 2023] as representative GAN-based

methods. Among these, DeltaEdit is the only model that utilizes

text-free training like our method. Additionally, we also compare

against di�usion-based approaches, namely Di�usionCLIP [Kim

et al. 2022b], Plug-and-Play [Tumanyan et al. 2022], and Instruct-

Pix2Pix [Brooks et al. 2023]. Among these, the method most similar

to ours is DeltaEdit in the sense that it is also solely trained on

image data and does not utilize any text data during training. By

evaluating our method against these diverse approaches, we provide

a comprehensive analysis of its performance and highlight its dis-

tinct advantages in text-guided image manipulation. To evaluate the

approaches quantitatively, we employ Fréchet Inception Distance

(FID) [Heusel et al. 2017], Attribute Manipulation Accuracy (AMA),
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Source Target BlendGAN TargetCLIP-O TargetCLIP-E OursMimicBrush

Fig. 5. Comparison with state-of-the-art reference-guided image synthesis approaches. Our approach e�ectively transfers the style of the target

image to the source image while e�ectively preserving identity compared to competing methods.

Fig. 6. Reference-guided image synthesis with mixed embeddings.

Each row shows the input image, the initial result with the CLIP image

embedding, the refined result with a mixed embedding that incorporates

the target a�ribute with U = 0.5, and the reference image, respectively.

Target text a�ributes are “beard” (top row), “black hair” (middle row), and

“smiling” (bo�om row). Incorporating mixed modality embeddings results in

more accurate and detailed image modifications.

and CLIP Manipulative Precision (CMP) following the methodology

introduced by CLIPInverter [Baykal et al. 2023]. Please refer to the

supplementary material for more details on the evaluation metrics.

Fig. 7 presents text-guided image manipulation results of our

proposed approach along with several competing methods across

various textual descriptions. TediGAN-B and DeltaEdit struggle to

e�ectively manipulate the images, often resulting in images simi-

lar to the input. While StyleCLIP-LO, StyleCLIP-GD and HairCLIP

perform better, they still exhibit limitations when manipulating

all speci�ed attributes.CLIPInverter performs well when explicit

attribute manipulations are speci�ed in the descriptions (�rst two

rows), but it falls short when encountering novel descriptions un-

seen during its training, such as “surprised” or “Elsa from Frozen”.

Di�usionCLIP [Kim et al. 2022b] generates images with noticeable

artifacts, leading to poor output quality. While Plug-and-play [Tu-

manyan et al. 2022] successfully applies most manipulations, the

resulting images often lack realism, appearing cartoonish and with

unintended attribute modi�cations. In contrast, our model, even

trained without any textual data, successfully applies single or mul-

tiple attribute changes while better preserving the identity of the

input images compared to the competing approaches.

Table 3 presents the quantitative results. Here, we group our ap-

proach and DeltaEdit together to distinguish these works from the

others which utilize additional text data during training. We eval-

uate manipulation accuracy and precision using AMA (Single) for

single attribute changes and AMA (Multiple) for multiple attribute

changes. Remarkably, our model achieves comparable or even better

performance in manipulation accuracy and precision compared to

leading text-guided image manipulation models, including Style-

CLIP, and Di�usionCLIP. In terms of FID, the di�usion-basedmodels,

Di�usionCLIP and Plug-and-play, excel as compared to GAN-based

approaches due to their high-quality generation capabilities. Even

though we do not use textual data during training, our model �nds a

good balance between the metrics and consistently delivers compet-

itive performance. It e�ectively handles descriptions involving mul-

tiple attribute changes. More importantly, as compared to DeltaEdit,
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Inpu

t

Ours

The person is wearing heavy makeup, lipstick. She has wavy hair, rosy cheeks, and pointy nose.

She wears heavy makeup. She is young and has blond hair, mouth slightly open, and big lips.

Surprised

Elsa from Frozen

TediGAN-B StyleCLIP-LO StyleCLIP-GD HairCLIP DeltaEdit CLIPInverter DiffusionCLIP Plug-and-play InstructPix2Pix

Fig. 7. Comparisons with state-of-the-art text-guided image manipulation methods. Our model shows remarkable versality in manipulating images

across a diverse range of textual descriptions. The results vividly illustrate our model’s ability to accurately apply changes based on target descriptions

encompassing both single and multiple a�ributes. Compared to the competing approaches, our model preserves the identity of the input much be�er while

successfully executing the desired manipulations.

Table 3. �antitative results for text-guided image editing. Even with-

out explicit training on textual descriptions, HyperGAN-CLIP achieves re-

sults competitive with the state-of-the-art methods. The best and second

best models are highlighted in bold and underlined, respectively.

FID↓ CMP↑ AMA↑ AMA↑

(Sng.) (Mult.)

TediGAN-B 55.424 0.285 11.286 1.142

StyleCLIP-LO 80.833 0.210 15.857 3.429

StyleCLIP-GD 82.393 0.191 33.143 11.429

HairCLIP 93.523 0.218 41.571 15.149

CLIPInverter 97.210 0.221 61.429 41.714

Di�usionCLIP 29.280 0.243 26.000 4.857

Plug-and-play 68.287 0.199 27.429 7.143

InstructPix2Pix 47.531 0.173 40.571 19.714

DeltaEdit 80.316 0.171 8.857 0.571

Ours 87.851 0.189 25.143 10.000

the other text-guided image manipulation method with text-free

training, our HyperGAN-CLIP gives much superior performance.

In the Supplementary Material, we provide further visual compar-

isons and example results on the CUB-Birds dataset for reference-

guided image synthesis and text-guided image manipulation tasks.

In addition to the quantitative analyses, we conducted a user study

using Qualtrics with 16 participants to evaluate the performance of

the models for all three tasks. We focused on methods that have sim-

ilar characteristics to ours: all-in-one models for multiple domain

adaptation and text-based editing methods with text-free training.

In our human evaluation, we randomly generated 25 questions

for each task and asked participants to rank the models based on

their performance. The rankings showed that our HyperGAN-CLIP

model, using a single uni�ed framework, achieves highly competi-

tive results, often outperforming or matching the existing models.

For more details, please refer to the Supplementary Material.

5 CONCLUSION

Wepresent HyperGAN-CLIP, a �exible framework for addressing do-

main adaptation challenges in GANs, also supporting both reference-

guided image synthesis and text-guided image manipulation. Our

e�cient hypernetwork modules adapt a pre-trained StyleGAN gen-

erator to handle both image and text inputs. By utilizing residual

feature injection and a conditional discriminator, it preserves source

identity and image diversity while e�ective transferring target do-

main characteristics to produce high-�delity images. Extensive eval-

uations show that HyperGAN-CLIP outperforms existing domain

adaptation methods, excels in text-guided editing, and competes

strongly in reference-guided image synthesis. While our frame-

work handles various tasks, some require distinct training processes.

Future research could seamlessly incorporate a mixture-of-experts

approach to train a single model equipped with routing mechanisms.
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1 DIRECTIONAL CLIP LOSSES

Together, these losses ensure that crucial semantic information is

preserved while capturing variations unique to each domain. Their

de�nitions di�er slightly between domain adaptation and reference-

guided image synthesis due to the varying nature of source and

target data, yet both share the core objective of measuring the

semantic shifts to enhance diversity and preserve content. CLIP-

Across captures the directional relationship between source and

target/reference samples to guide adaptation, while CLIP-Within

ensures that transformations maintain internal consistency within

the adapted domains or transformations. These losses are instru-

mental in re�ning the generator’s ability to retain identity and style

information e�ectively, aligning generated outputs with the desired

target characteristics. We provide graphical illustrations in Fig. 1 to

clarify their de�nitions and distinctions across domain adaptation

and reference-guided image synthesis tasks.

2 EVALUATION DETAILS

Domain Adaptation Experiments. To quantitatively assess the

quality and �delity of the generated images, we used the widely

used Fréchet Inception Distance (FID) score [Heusel et al. 2017]

and the Quality and Diversity metrics suggested in [Alanov et al.

2022]. The FID score provides a measure of the statistical distance

between the distributions of real and generated images. The Quality

metric evaluates how closely the adapted images align with the

text description of the target domain. This is computed as the mean

cosine similarity between the CLIP embeddings of the images and

the CLIP embedding of the text description. The Diversity metric, on

the other hand, measures the variability among the adapted images.

This is quanti�ed as the mean pairwise cosine distance between the

CLIP embeddings of all the adapted images. In our evaluation, we

generate a set of 1K images for each target domain using the NADA-

expanded Domain Expansion model, treating these images as real.

For the FID evaluation, we compare the distribution of these images

with that of images generated by the evaluated methods. Speci�-

cally, we randomly sample 100 images from each target domain to

represent the generated image distribution.

Reference-Guided Image Synthesis Experiments. Weuse FID [Heusel

et al. 2017] to measure the quality and the �delity of the synthesized

images as a lower FID score indicates that the synthesized images

are closer to the FFHQ domain, which is the original domain the

StyleGAN2 is trained on. We use the ID similarity [Deng et al. 2022]

to measure identity preservation. Ideally, we want the ID similarity
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(a) For domain adaptation.We encode the images generated by the

original and the modulated generators, representing the source and

target domains, in the CLIP space. CLIP-Across loss, involving Δ2sample

and Δ2fixed, captures the di�erences between the source and target

domains. On the other hand, CLIP-Within loss, computed using Δ2source
and Δ2target, preserves the semantic information that is unrelated to

the domain gap.

xrecon

xtarget

xfixed

xsample

xtrained

Gsource

Gadapted

∆csample

∆cfixed

∆ctarget

∆csource

C
L
IP
-A

c
r
o
s
s

CLIP-Within

(b) For reference-guided image synthesis. In reference-guided image

synthesis, source and target domains are the same, and thus it involves

in-domain adaptation. CLIP-Across loss uses the mean StyleGAN image

as the anchor image Gfixed. On the other hand, CLIP-Within loss utilizes

the reconstructed image Grecon to be�er preserve facial identity and

image content.

Fig. 1. Visualization of the directional CLIP losses. (a) for domain adaption. (b) for reference-guided image synthesis.

with the source image to be high and ID similarity with the target

image to be low as we want to preserve the identity of the source

image while only transferring the attributes of the target image to

the source. Finally, we use the CLIP embedding space to measure

the semantic similarity of the target and output images to evaluate

how well the semantics of the target image are transferred.

Text-Guided Image Manipulation Experiments. To evaluate the

approaches quantitatively, we employ multiple quantitative met-

rics, namely Fréchet Inception Distance (FID) [Heusel et al. 2017],

Attribute Manipulation Accuracy (AMA), and CLIP Manipulative

Precision (CMP) following the methodology introduced by CLIPIn-

verter [Baykal et al. 2023]. FID serves as a measure of the quality

and �delity of the synthesized images.

Attribute Manipulation Accuracy (AMA) [Baykal et al. 2023]

measures how well a single manipulation is applied. To calculate

the AMA score of a model, for each attribute (such as blonde hair),

we �rst select 50 images that the attribute is not present in. Then,

we edit these images with a corresponding caption, such as The

person has blonde hair. Finally, we use pre-trained attribute classi�ers

to measure the manipulation accuracy on the output images. We

average the accuracy accross the attributes to obtain the �nal AMA

score. We trained attribute classi�ers for each of the 40 attributes

that are present in the CelebA [Liu et al. 2015] dataset. We used

the 15 attributes that achieve 90% or higher validation accuracies to

calculate the AMA scores. Here is a full list of attributes we used

for the CelebA dataset:

• blonde hair

• bushy eyebrows

• chubby

• double chin

• eyeglasses

• goatee

• gray hair

• heavy makeup

• male

• mouth slightly open

• mustache

• rosy cheeks

• smiling

• wearing lipstick

• wearing necktie

In order to quantify the alignment between the output images and

the target captions, while preserving the contents of the input image,

we employ CMP, which is de�ned as CMP = (1 − di�) · sim, with

di� denoting the L1 pixel di�erence between the input and output

images, and sim denotes the CLIP semantic similarity between the

output image and the target description.

3 USER STUDY

To further assess our approach and compare it with other competing

approached across all three tasks, we conduct a user study using

Qualtrics. In the domain adaptation task, we compare our model

with DynaGAN [Kim et al. 2022a] and HyperDomainNet [Alanov

et al. 2022], both of which also facilitate adaptation across multiple

domains with a singlemodel architecture, akin to ours. For reference-

guided image synthesis, our comparisons include TargetCLIP-E [Chefer

et al. 2022], TargetCLIP-O [Chefer et al. 2022], and BlendGAN [Liu

et al. 2021]. For text-guided image manipulation, we evaluate our

framework against DeltaEdit [Lyu et al. 2023], which similarly does

not utilize textual textual data during its training phase.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2024.
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Fig. 2. A sample question from the user study. The participants rank

the options from best to worst.

The human evaluation comprises three sections, each dedicated

to one of our tasks, with 25 questions per section. Within each part,

users are shown a random source image alongside a target image

(or target text in the case of text-guided editing). In the domain

adaptation and reference-guided editing sections, participants rank

the results based on each model’s performance by arranging the

images in order of preference, with the top position indicating the

best result. For text-guided editing section, participants choose the

superior output between our model and DeltaEdit. To mitigate any

bias in the evaluation process, the order in which results are dis-

played is randomized. An example question from the user study is

illustrated in Fig. 2.

In Table 1, we present the average human rankings of the meth-

ods for all three tasks. As shown, for text-guided image manipu-

lation, nearly all participants consistently preferred the results of

HyperGAN-CLIP over those of DeltaEdit. In the domain adaptation

task, HyperGAN-CLIP and DynaGAN received similar rankings,

indicating comparable performance. For reference-guided image

synthesis, the task appears more subjective, as all average rankings

are above 2, with HyperGAN-CLIP showing competitive results

against the TargetCLIP models.

Table 1. User study results.

Multiple Domain Adaptation

Method Ranking

HyperDomainNet 2.77

DynaGAN 1.58

Ours 1.65

Reference-Guided Image Synthesis

Method Ranking

BlendGAN 3.24

TargetClip-O 2.20

TargetClip-E 2.13

Ours 2.43

Text-Guided Image Manipulation

Method Ranking

DeltaEdit 1.93

Ours 1.07

4 CONTROLLABLE MANIPULATION

We observe that scaling the CLIP embeddings translates roughly to

scaling of the modulation weights, and consequently, feature maps.

By adjusting the scaling ratio of the residual target domain features

injected into the source domain features by a factor V , we can control

the degree of adaptation during inference. Furthermore, in line

with previous GAN domain adaptation studies, we can enhance the

style quality by employing style mixing over the latent codes. This

involves interpolating the original latent code F with the target

domain’s latent codeFC as F̂ = U ∗F + (1 − U) ∗FC , where U is a

scalar between 0 and 1, controlling the level of style mixing. The

resulting interpolated latent code F̂ can be then used as input to

the generator for image synthesis. We demonstrate the impact of

these control parameters on the generated images in Fig. 3.

Moreover, we observe that even if we additionally scale the

amount of features injected into the original image features by

some factor V , our approach gives very plausible results. It does

not change the features that not related to the target. We compare

it with our baseline model with conditional discriminator trained

with Δ-CLIP embeddings, where we use the same V to scale the

modulation parameters to control the degree of adaptation (as in

DynaGAN). Since, it does not use original domain features and

weight modulation is responsible for preserving both original im-

age characteristics and transferring target style content from CLIP

embeddings, it fails to scale well with amount of the feature scaling

parameter, as demonstrated in Fig. 4. This highlights the importance

of using domain speci�c features as residuals to the original features

instead of directly generating the overall combined features.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2024.
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5 ZERO-SHOT DOMAIN ADAPTATION

The use of CLIP conditioning in the design of our proposed hyper-

network module has critical advantages over the prior methods. In

this way, during training the model can not only exploit the com-

mon characteristics shared among target domains, but it also allows

for zero-shot domain adaptation, especially well when the novel

target domain not seen during training is semantically close to the

target domains in training data. In Fig.5, we provide example results

on target dog breed images from the AFHQ dog dataset not used in

the training.

6 ABLATION STUDY

We conduct an ablation study to assess the impact of each compo-

nent in our model on domain adaptation performance. The qual-

itative and quantitative results are presented in Fig. 6 and Table

2, respectively. The baseline network uses only the features given

by the target-domain modulated generator, and ignores the source

domain features. This approach results in the loss of the source

identity and is prone to over�tting to the provided target image.

Adding a conditional discriminator loss helps to mitigate the prob-

lems to some extent and enhances image quality. Considering resid-

ual features scheme that employs target features alongside with the

source features preserves the facial identity better than the baseline,

but falls short in terms of image quality. Finally, our full model,

HyperGAN-CLIP, which utilizes residual feature scheme together

with a conditional discriminator e�ectively preserves identity while

capturing target style and maintaining high image quality.

!

β

10

1

Fig. 3. Controllable Manipulation. In our approach, we can vary the

amount of residual features injected as well as the amount of target style

latent, which gives users the ability to control degree of adaptation with

respect to style consistency vs data fidelity.

0 3.5β

Fig. 4. Scaling residual features. The top row shows the results obtained

with our approach, whereas the bo�om on corresponds to the results by

the baseline model with the discriminator. Several artifacts instantly start

to appear in the baseline results when scaling beyond the training value of

1 (third column corresponds to V = 1). On the other hand, our approach

works relatively seamlessly and preserves the identity be�er.

Source Target Output Target Output

Fig. 5. Zero-Shot Domain Adaptation. Our model can perform domain

adaption quite reasonably well on target domains not seen during training.

Here we provide results on target dog breed images from the AFHQ dog

dataset not used in the training.

Table 2. �antitative analysis of the ablation study. The baseline model

that employs target-domain modulated features gives the worst score. How-

ever, incorporating CLIP-conditioned discriminator and leveraging residual

features scheme introduce notable improvements. Our full HyperCLIP-GAN

model, utilizing all these components achieves the best score.

Component FID ↓

Baseline (B) 43.43

Baseline + Cond. Disc. (B + CD) 33.76

Baseline + Res. Features (B + RF) 33.43

HyperGAN-CLIP (B + CD + RF) 30.55

7 IMPACT OF Δ-CLIP EMBEDDINGS

As stated in the main paper, the Δ-CLIP space provides a seman-

tic embedding space that o�ers improved alignment between text

and image modalities compared to the original CLIP space. This

distinction becomes particularly evident when examining the text-

guided image manipulation task. In Fig. 7 and Fig. 8, we show the

impact of utilizing these spaces within our hypernetworks module

adjusting the weights of the pre-trained StyleGAN generator. The

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2024.
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Source Target Baseline (B) B + Cond. Disc. B + Res. Feat. HyperGAN-CLIP

Fig. 6. �alitative results for the ablation study. Baseline network does not preserve the facial identity of the source image, giving an outcome closely

resembling to the target image. When CLIP-conditioned discriminator is incorporated to the baseline, the image quality is improved. Using residual features

scheme preserves the facial identity be�er. Our full model gives the best results in terms of both identity and image quality.

results demonstrate that the Δ-CLIP embeddings enable highly pre-

cise text-based editing while preserving image quality and identity

�delity.

8 ADDITIONAL PERFORMANCE COMPARISONS

In Fig. 9 and Fig. 10, we present additional comparisons inmultple do-

main adaptation against Mind-the-GAP [Zhu et al. 2022], StyleGAN-

NADA [Gal et al. 2022], HyperDomainNet [Alanov et al. 2022], Dy-

naGAN [Kim et al. 2022a], and Adaptation-SCR [Liu et al. 2023] on

AFHQ and FFHQ datasets, respectively. In Fig. 11, we give additional

comparisons of our approach against the BlendGAN [Liu et al. 2021],

TargetCLIP-O [Chefer et al. 2022] and TargetCLIP-E [Chefer et al.

2022] models in reference-guided editing. Finally, in Fig. 12, we pro-

vide additional qualitative comparisons in text-driven manipulation

against TediGAN-B [Xia et al. 2021], StyleCLIP-LO [Patashnik et al.

2021], StyleCLIP-GD [Patashnik et al. 2021], HairCLIP [Wei et al.

2022], DeltaEdit [Lyu et al. 2023], CLIPInverter [Baykal et al. 2023],

Di�usionCLIP [Kim et al. 2022b] and plug-and-play [Tumanyan

et al. 2022].

We trained our HyperCLIP-GAN on the CUB-Birds dataset [Wah

et al. 2011] as well to demonstrate the generalization capabilities of

our approach. When training these models, we use the same losses

as described in the main paper except for the identity preservation

loss, where we alternatively employ a ResNet50 [He et al. 2015]

network trained with MOCOv2 [Chen et al. 2020]. In Fig. 13, we

provide various text-guided editing results, and in Fig. 14, we provide

several reference-guided synthesis results for the CUB-Birds dataset.

We also perform an additional analysis covering our approach

and HyperDomainNet, two hypernetworks-based multi-domain

adaptation approaches. In particular, we train our framework on

a much smaller, less diverse set of domains involving one image

per domain and consisting of 20 di�erent domains from [Alanov

et al. 2022]. In Fig. 15, we provide sample side-by-side qualitative

comparisons using the pre-trained model provided by the authors.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2024.
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Source w/ ∆-CLIP w/ CLIP w/ ∆-CLIP w/ CLIP

Black hair

w/ ∆-CLIP w/ CLIP

Black hair and lipstick Blonde hair and lipstick

Michelle Obama More neutral expression Asian

Chubby woman High contrast High contrast and saturation with light blue background

Fig. 7. Impact of Δ-CLIP Embeddings. Our model equipped with Δ-CLIP embeddings performs semantic edits that are be�er aligned with the provided

textual descriptions as compared to the version of our model that employs original CLIP embeddings.

Overall, the results show that our method performs either better or

on par with HyperDomainNet on this more limited set of domains.

9 LIMITATIONS

HyperGAN-CLIP performs optimally when the target domain shares

a resemblance with the source domain in terms of content. How-

ever, when there is a signi�cant domain gap, it struggles to adapt

the pre-trained generator to the target domain. Additionally, for

reference-guided image synthesis and text-guided image manipula-

tion, HyperGAN-CLIP can produce visually plausible results only for

concepts encountered during training or those that are semantically

similar. It fails to generalize to entirely di�erent, unseen concepts.

10 ETHICAL STATEMENT

The transformative capabilities of Generative Adversarial Networks

(GANs) in image editing, particularly in the realm of human face

manipulation present not only technological advancements but also

ethical implications that merit careful consideration. Prominent con-

cerns involve the potential for the creation of deceptive or harmful

content, exempli�ed by the emergence of deepfakes, which can be

exploited for malicious purposes such as disseminating misinfor-

mation or perpetuating identity theft. Moreover, biases encoded in

training data may perpetuate societal prejudices. This study empha-

sizes responsible research practices, advocating for transparent dis-

closure of limitations and risks. Open dialogue within the research

community is crucial for addressing these ethical implications. Im-

plementing safeguards, including content detection methods and

adherence to ethical guidelines, is essential for the responsible de-

velopment and deployment of face editing technologies, ensuring a

positive societal impact.
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Source                   Target                StyleGAN-NADA  Adaptation-SCR    Mind-The-Gap   HyperDomainNet DynaGAN Ours

Fig. 9. Additional qualitative comparison against the state-of-the-art few-shot domain adaptation methods on AFHQ dataset. Our proposed

HyperGAN-CLIP model outperforms competing methods in accurately capturing the visual characteristics of the target domains. The synthesized images

exhibit a higher degree of fidelity and realism, demonstrating the e�ectiveness of our approach.
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Source                   Target                StyleGAN-NADA  Adaptation-SCR    Mind-The-Gap   HyperDomainNet DynaGAN Ours

Fig. 10. Additional qualitative comparison against the state-of-the-art few-shot domain adaptation methods on AFHQ dataset. Our proposed

HyperGAN-CLIP model outperforms competing methods in accurately capturing the visual characteristics of the target domains. The synthesized images

exhibit a higher degree of fidelity and realism, demonstrating the e�ectiveness of our approach.
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Source Target BlendGAN TargetCLIP-O TargetCLIP-E OursMimicBrush

Fig. 11. Additional qualitative comparison with state-of-the-art reference-guided image synthesis approaches. Our approach e�ectively transfers

the style of the target image to the source image while e�ectively preserving identity compared to competing methods.
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Input Ours

The woman wears heavy makeup. She has big nose, and high cheekbones. She is smiling.

Mohawk hairstyle

A woman without makeup

The woman wears lipstick. She has blond hair.

Donald Trump

Bald

TediGAN-B StyleCLIP-LO StyleCLIP-GD HairCLIP DeltaEdit CLIPInverter DiffusionCLIP Plug-and-play InstructPix2Pix

Fig. 12. Additional qualitative comparisons with state-of-the-art text-guided image manipulation methods. Our model shows remarkable versality

in manipulating images across a diverse range of textual descriptions. The results vividly illustrate our model’s ability to accurately apply changes based on

target descriptions encompassing both single and multiple a�ributes. Compared to the competing approaches, our model preserves the identity of the input

much be�er while successfully executing the desired manipulations.
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Original Output Original Output

This bird is black in color with a sharp black beak and black eye rings. This bird is mostly iridescent blue with big bright eyes.

The wings have a stripe and a white belly, including small talons. This colorful bird has a green breast, blue cheek patch, and a long pointed 

black bill.

Fig. 13. Text-guided editing results for the birds dataset. Our approach generalizes to other domains, such as the bird images. We demonstrate zero-shot

text-guided image editing results.

Source Target Output Source Target Output

Fig. 14. Reference-guided editing results for the birds dataset. Our reference-guided synthesis generalizes to the birds domain, illustrated by the various

targets we provide.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2024.



Supplementary Material: HyperGAN-CLIP: A Unified Framework for Domain Adaptation, Image Synthesis and Manipulation • 13

Source Ours HyperDomainN

et

Target Ours HyperDomainN

et

Target Ours HyperDomainN

et

Target

Fig. 15. Additional qualitative comparison with HyperDomainNet. The comparisons on a smaller set of domains shows that our proposed HyperGAN-

CLIP model performs comparably or be�er than HyperDomainNet.
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