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The woman has brown hair, arched eyebrows, high cheekbones, and wavy hair and is wearing earrings, and lipstick. She is young.

He has bags under eyes, bushy eyebrows, mustache, and gray hair.

Fig. 1. Multi-attribute real image manipulation with CLIPInverter. We present CLIPInverter that enables users to easily perform semantic changes on
images using free natural text. Our approach is not specific to a certain category of images and can be applied to many different domains (e.g., human faces,
cats, birds) where a pretrained StyleGAN generator exists (top). Our approach specifically gives more accurate results for multi-attribute edits as compared to
the prior work (middle). Moreover, as we utilize CLIP’s semantic embedding space, it can also perform manipulations based on reference images without any
training or finetuning (bottom).

Authors’ addresses: Ahmet Canberk Baykal, abaykal20@ku.edu.tr, Koç University,
Turkey; Abdul Basit Anees, aanees20@ku.edu.tr, Koç University, Turkey; Duygu
Ceylan, duygu.ceylan@gmail.com, Adobe Research, United Kingdom; Erkut Erdem,
erkut@cs.hacettepe.edu.tr, Hacettepe University, Turkey; Aykut Erdem, aerdem@ku.
edu.tr, Koç University, Turkey; Deniz Yuret, dyuret@ku.edu.tr, Koç University, Turkey.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

Researchers have recently begun exploring the use of StyleGAN-based mod-
els for real image editing. One particularly interesting application is using
natural language descriptions to guide the editing process. Existing ap-
proaches for editing images using language either resort to instance-level
latent code optimization or map predefined text prompts to some editing
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directions in the latent space. However, these approaches have inherent
limitations. The former is not very efficient, while the latter often struggles
to effectively handle multi-attribute changes. To address these weaknesses,
we present CLIPInverter, a new text-driven image editing approach that is
able to efficiently and reliably perform multi-attribute changes. The core of
our method is the use of novel, lightweight text-conditioned adapter layers
integrated into pretrained GAN-inversion networks. We demonstrate that
by conditioning the initial inversion step on the CLIP embedding of the
target description, we are able to obtain more successful edit directions. Ad-
ditionally, we use a CLIP-guided refinement step to make corrections in the
resulting residual latent codes, which further improves the alignment with
the text prompt. Our method outperforms competing approaches in terms
of manipulation accuracy and photo-realism on various domains including
human faces, cats, and birds, as shown by our qualitative and quantitative
results.

CCS Concepts: • Computing methodologies→ Image manipulation;
Neural networks.
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to-Image Translation, Image Editing
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1 INTRODUCTION
The quality of images synthesized by Generative Adversarial Net-
works [Goodfellow et al. 2014] have reached a remarkable level in
less than a decade. StyleGAN and its variants [Karras et al. 2021,
2019, 2020] are now capable of generating highly realistic images,
while allowing control over the generation process by means of
style mixing. Recent works [Härkönen et al. 2020; Shen et al. 2020]
have demonstrated that StyleGAN learns disentangled attributes,
making it possible to find directions in its latent space to generate
images that possess such desired attributes. Consequently, there has
been a growing interest in utilizing semantic editing directions in
the latent space mostly for preset directions such as gender, face
orientation, hair color.
Concurrent to the advances in generative modeling, we are also

witnessing exciting breakthroughs in multimodal learning. For ex-
ample, the recently proposed Contrastive Language-Image Pre-
training (CLIP) model [Radford et al. 2021] provides an effective
common embedding for images and text captions. Such an embed-
ding, when combined with powerful GANs paves the road towards
text-guided image editing, one of the most natural and intuitive
ways of manipulating images. Hence, it comes with no surprise that
several recent works [Kocasari et al. 2021; Li et al. 2020; Patashnik
et al. 2021; Wei et al. 2022; Xia et al. 2021a] have focused on mapping
target textual descriptions to editing directions in the latent space
of StyleGAN. While some methods perform optimization in the
latent space guided by CLIP [Patashnik et al. 2021; Xia et al. 2021a],
others train a separate mapper network for each type of textual
edit [Patashnik et al. 2021] or a general mapper conditioned on
reference images & textual descriptions [Wei et al. 2022]. Instance-
based optimization methods require long inference times. Training
mappers for a single text prompt reduces the inference time to a
single forward pass, but comes with the price of training time as

separate mappers need to be trained for each text prompt. More-
over, these mappers that operate in the latent space do not directly
consider the features of the original image as they take inverted
latent codes as inputs from pretrained GAN inversion networks.
In this study, we present a new approach, which we call CLIPIn-

verter, to automatically edit an input image based on a target textual
description containing multiple attributes by adjoining lightweight
adapter modules to pretrained unconditional inversion methods.
CLIPInverter includes a novel CLIP-conditioned adapter module
(CLIPAdapter) that is attached to the pretrained encoder model to
map both the input image and the target textual description to a
residual latent code by utilizing the common CLIP embedding space.
The residual latent code is then combined with the latent code of the
input image obtained by the unconditional branch of the encoder,
and is fed to a CLIP-guided correction module (CLIPRemapper) that
applies a final correction by blending the latent codes with latent
codes predicted from the CLIP embedding of the target textual de-
scription based on learnable blending coefficients. The final latent
code is decoded by a pretrained and frozen StyleGAN2 generator to
synthesize the manipulated image that reflects the desired changes
while preserving the identity of the original subject as much as
possible. Our encoder-adapters are lightweight networks that di-
rectly modulate image feature maps using text embeddings and they
could be appended to many pretrained encoders. Our CLIP-guided
correction module utilizes the CLIP text embeddings to enhance the
manipulations of the generated images while preserving the photo-
realism. Ourmethod does not require any additional optimization on
the latents and it successfully applies manipulations using various
text prompts in a single forward pass. Since we directly modulate
feature maps extracted during the inversion phase, our method is ca-
pable of editing images much better than the competing approaches,
especially in cases when there are multiple attributes present in the
target textual description, as proven by our experiments. See Fig. 2
for an overview of our framework.
Our method aims to strike a balance between distortion and ed-

itability [Tov et al. 2021]. Namely, our text-guided CLIPAdapter is
utilized to find an editing direction that is aligned with the given
target description, specific to the input image. By leveraging the
inversion in theW+ space, we aim to preserve the identity of the
input image in the manipulated output, which helps in achieving
relatively low distortion. However, it is important to note that com-
plete elimination of distortion is not feasible in this process. While
we are able to preserve the identity to a certain degree, we observe
that not all attributes described in the target caption may be fully
captured in the manipulated image. To address this, we introduce
the text-guided refinement module, CLIPRemapper, which applies
a final correction to the latent code, further aligning it with the
desired target description. Essentially, CLIPRemapper finds a more
editable region in the vicinity of the latent code we obtain from the
previous stage. This process boosts the manipulation performance
of our model massively, while keeping the distortion at a comparable
level, as shown in our ablation study.

We demonstrate editing results for challenging cases where there
are many attributes present in the target description. Our method
is not restricted to a particular domain like commonly studied hu-
man faces, and we also evaluate our approach on birds and cats
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images. Exploring the multimodal nature of CLIP, instead of target
textual descriptions, we can additionally use images or target tex-
tual descriptions containing vocabulary never seen during training
as the guiding signal. Finally, we show that linearly interpolating
between the original latent code and the updated latent code results
in smooth image manipulations, providing a means for user to have
control over the manipulation process.
We evaluate our method on a diverse set of datasets and pro-

vide detailed qualitative results and comparisons against the state-
of-the-art models. Quantitative comparisons in language-guided
editing still remains a challenge, as one needs to evaluate the ma-
nipulations from different aspects, such as accuracy, preservation
of text-irrelevant details, photorealism etc. Current metrics are not
suitable for evaluation as they do not consider some of these as-
pects at all. We propose two new metrics, Attribute Manipulation
Accuracy (AMA), CLIP Manipulative Precision (CMP) to measure
how accurately the manipulations are applied, and how well the
text-irrelevant details are preserved. We perform quantitative com-
parisons against state-of-the-art models using these metrics along
with FID. These comparisons as well as a user study that we con-
ducted to evaluate perceptual realism and manipulation accuracy
demonstrate the superiority of our approach over the prior work.

Our code andmodels are publicly available at the project website1.

2 RELATED WORK

2.1 GAN Inversion
In response to the growing demand for interpretability and con-
trollability in GANs, the need for GAN inversion has emerged as a
pivotal technique. By mapping a given image back into the latent
space of a pretrained GAN model, as introduced by Zhu et al. [2016],
GAN inversion facilitates a deeper understanding of the underlying
features and structures in the latent space, enabling researchers
to manipulate and interpret generated images with greater preci-
sion and insight. Below we discuss some representative works to
highlight three main approaches to accomplish GAN Inversion –
please refer to the recent survey [Xia et al. 2021b] for an in-depth
discussion of various other inversion methods.
The optimization-based methods directly optimize a latent code

that reconstructs the target image as close as possible using gra-
dient descent [Abdal et al. 2019, 2020; Creswell and Bharath 2016;
Tewari et al. 2020b]. This line of works is instance specific, and does
not require any trainable modules. The learning-based methods
invert an image by a learned encoder. This approach is similar to
an autoencoder pipeline, where the pretrained generator acts as the
decoder. Unconditional encoders [Alaluf et al. 2021b; Bai et al. 2022;
Bau et al. 2019a; Richardson et al. 2021; Tewari et al. 2020a; Tov
et al. 2021; Zhu et al. 2020] aim to solely invert the image, without
any modifications while conditional encoders [Alaluf et al. 2021a]
are designed for obtaining a latent code conditioned on attributes
such as pose, age, or facial expressions. The so-called hybrid meth-
ods [Bau et al. 2019b; Zhu et al. 2016] combine optimization-based
methods with learning-based methods. The images are first inverted
to a latent code by a learned encoder. This latent code then becomes

1https://cyberiada.github.io/CLIPInverter

the initialization for the latent optimization, and is optimized to
reconstruct the target image.
More recent approaches build different architectures, fine-tune

StyleGANweights, ormodulate featuremaps for inversion. Style Trans-
former [Hu et al. 2022] uses a combination of convolutional neural
networks and transformers to invert images into the latent space.
Pivotal Tuning Inversion (PTI) [Roich et al. 2021] fine-tunes the
generator around a pivotal latent code to find a balance for the
distortion-editability tradeoff. Some methods [Alaluf et al. 2021c;
Dinh et al. 2022] train hypernetworks to modulate the weights of a
pre-trained StyleGAN network for accurate as well as editable inver-
sions. Spatially-Adaptive Multilayer (SAM) GAN Inversion [Parmar
et al. 2022] predicts invertibility maps and High-Fidelity GAN In-
version (HFGI) [Wang et al. 2022] predicts latent maps to modulate
StyleGAN features.
While both optimization-based and hybrid approaches may re-

construct images faithfully, they require solving an optimization
problem for each image, resulting in longer processing times. On
the other hand, our approach adapts learned adapters appended
to encoders, which provides a much faster alternative to current
methods. Furthermore, we condition the inversion process directly
on the target captions, which ensures that a more effective editing
space direction can be found in the latent space.

2.2 Latent Space Manipulation
Recent work has shown that GANs learn a semantically-coherent
latent space, enabling to map manipulations in the latent space to
semantic image editing. Specifically, StyleGAN [Karras et al. 2019]
learns an intermediate latent space by employing a mapping net-
work to transform the sampled latent code. These intermediate
latent codes determine the parameters of the AdaIN [Huang and
Belongie 2017] layers introduced in the generator to control the
style of the generated image, allowing control over the synthesis
at different levels. A common approach when manipulating images
is to first invert the input image back into the latent space of a
pretrained generator using GAN inversion and then traverse the
latent space to find a meaningful direction. Such a direction can be
found by either using explicit supervision of image attribute anno-
tations [Abdal et al. 2021; Shen et al. 2020; Wu et al. 2020], or in an
unsupervised manner [Härkönen et al. 2020; Shen and Zhou 2021;
Voynov and Babenko 2020]. Recently proposed methods consider
various modalities for conditional image manipulation. StyleMap-
GAN [Kim et al. 2021] proposes an intermediate latent space with
spatial dimensions with spatial modulation that enables local edit-
ing based on reference images. Similarly, the study by [Collins et al.
2020] uses a transformation matrix to control the interpolation be-
tween an input image and a reference image in the latent space to
locally edit the input image. The recent work of [Alaluf et al. 2021a]
manipulates an input image based on a target age by training an
encoder conditioned on the target age to find residual latent codes
to add to the inverted latent code of the original image. In a similar
vein, we train adapter layers appended to an encoder conditioned
on textual descriptions to output these residual latent codes. We
also use the CLIP model to define supervisory signals to explore the
similarity of an input image and a textual description.
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Fig. 2. An overview of our CLIPInverter approach in comparison to similar text-guided image manipulation methods. StyleCLIP-LM utilizes target
description only in the loss function. HairCLIP additionally uses the description to modulate the latent code obtained by the encoder within the mapper.
Alternatively, our CLIPInverter employs specially designed adapter layers, CLIPAdapter, to modulate the encoder in extracting the latent code with respect to
the target description. To further obtain more accurate edits, it also makes use of an extra refinement module, CLIPRemapper, to make subsequent corrections
on the predicted latent code.

Moreover, there are several latent spaces to consider in a Style-
GAN2 generator. The latent mapper transforms the latent codes in
the spaceZ drawn from a Normal distribution to an intermediate
latent space W. The latent codes in the W space are used at differ-
ent stages in the StyleGAN2 generator, after being mapped to the S
space by an affine transformation.W+ space is an extended version
of theW space where a different w is used for each style input of
the generator. While some works find editing directions in the S
space such as StyleCLIP-GD [Patashnik et al. 2021] and StyleMC
[Kocasari et al. 2021], many others like StyleCLIP-LO, StyleCLIP-LM
[Patashnik et al. 2021], SAM [Alaluf et al. 2021a] utilize the extended
intermediate spaceW+. Our text-guided image encoder operates
onW+ to find effective editing directions.

2.3 Text-Guided Image Manipulation
Given an image and a target description in natural language, the aim
of text-guided image manipulation is to generate images that reflect
the desired semantic changes while also preserving the details or
attributes not mentioned in the text. ManiGAN [Li et al. 2020] learns
a text-image affine combination which selects image regions that are
relevant to the language description and a detail correction module
that modifies these regions. TediGAN [Xia et al. 2021a] enforces the
text and image matching by mapping the images and the text to the

same latent space and performs further optimization to preserve
the identity of the subjects in the original image.

More recentworks use semantics learned by amulti-modalmethod
such as CLIP [Radford et al. 2021]. StyleCLIP [Patashnik et al. 2021]
uses the CLIP space to optimize for the latent code (StyleCLIP-LO)
that minimizes the distance of the image and text pair. They also
present a latent mapper (StyleCLIP-LM) that predicts residual latent
codes corresponding to specific attributes. Finally, they also experi-
ment with mapping a text prompt to a global direction (StyleCLIP-
GD) in the latent space that is independent of the input image. The
most recent StyleMC [Kocasari et al. 2021] model presents an effi-
cient method to learn global directions in the S space of StyleGAN2
for a given text prompt, by finding directions at lower resolutions
and applying manipulations at higher resolutions. It also utilizes
CLIP to minimize the distance between the generated image and
the text prompt. Most recently and most similar to our approach,
HairCLIP [Wei et al. 2022] modulates the inverted latent codes based
on hairstyle and hair color inputs as image or text. Their approach
is similar to StyleCLIP-LM. However, they also modulate the latent
codes with the CLIP embeddings rather than solely optimizing the
similarity in the CLIP space.

Our work share some similarities with the aforementioned meth-
ods. Like the original TediGAN model, we employ an encoder to
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predict the latent code conditioned on the provided target descrip-
tion. That said, we estimate a residual latent code reflecting only
the desired changes mentioned in the description, which is to be
added to the inverted latent code of the input image. StyleCLIP-LM
and StyleMC models predict residual latent codes similar to ours,
but they require training their mapper functions from scratch for
each text prompt via a loss function based on CLIP similarity. Most
similar to our approach, HairCLIP applies modulations in the latent
space after obtaining inversions with a pretrained network. On the
other hand, we let CLIP embeddings modulate the feature maps via
an adapter module for predicting the residual latent code. With this
modulation, our inversion step is text-guided, whereas HairCLIP
applies text-conditioning on the latent space. We also train a cor-
rection module which applies latent code blending with learnable
blending coefficients for improved accuracy, quality and fidelity
in the output images. In Fig. 2, we illustrate the aforementioned
fundamental differences between our approach and the most similar
StyleCLIP-LM and HairCLIP methods.

Our approach allows us to manipulate fine-scale details by modu-
lating the feature maps, resulting in more accurate manipulations
thanHairCLIP. Thanks to this process, we also eliminate the need for
separate training, unlike StyleCLIP-LM. That is, once our model is
trained, it can be directly used to manipulate images by considering
a large variety of text prompts containing multiple attributes. We
provide extensive comparisons against the aforementioned recent
StyleGAN-based methods in Section 4 and show the superiority or
competitiveness of our proposed approach.
Recently, diffusion models trained with variational inference

achieved state-of-the-art performance in image generation [Dhari-
wal and Nichol 2021; Ho et al. 2020; Rombach et al. 2022]. With this
success of diffusion based models, several text-guided image ma-
nipulation methods have been proposed. DiffusionCLIP [Kim et al.
2022] first converts the images to latent noises by forward diffusion
and then guides the reverse diffusion process by CLIP to control
the attributes in the synthesized images. UniTune [Valevski et al.
2022] introduces a simple method to fine-tune large scale text-to-
image diffusion models on single images. Similarly, Imagic [Kawar
et al. 2022] optimizes a text embedding and fine-tunes pretrained
generative diffusion models to perform edits on a single image.
Prompt-to-Prompt [Hertz et al. 2022] and its later extension Plug-
and-Play [Tumanyan et al. 2023] achieve semantic edits by blending
activations extracted from both the original and target prompts.
These diffusion-based editing methods differ from ours as each one
requires a large pre-trained text-to-image network. Hence, we do not
directly evaluate our approach against these methods, but provide
some comparisons in the supplementary.

2.4 Adapter Layers
Adapter layers [Houlsby et al. 2019], originally proposed for NLP
tasks, are compact modules that allow parameter sharing in an effi-
cient manner. The key idea is to add adapter modules, consisting of a
few layers, between the layers of a pretrained network. The parame-
ters of the adapter module are updated during the fine-tuning phase
on a downstream task, while the original parameters of the pre-
trained network remain the same. This way, most of the parameters

of the pretrained network are shared between different downstream
tasks, resulting in a model that is able to perform diverse tasks effi-
ciently. Since the parameters of the pretrained network are frozen,
the original capabilities of the model are preserved. The module
proposed for NLP [Houlsby et al. 2019] is appended after the feed-
forward layers and before adding the skip connection back, in a
transformer model. This module consists of a down-projection and
an up-projection layer. Compared to the original pretrained model,
the number of parameters of the adapter module is considerably
smaller, allowing the learning of new tasks efficiently.
Adapter layers have also been proposed to use in computer vi-

sion tasks. Rebuffi et al. [2017] introduced residual adapter layers
for multiple-domain learning in image recognition. Their residual
adapter layers are slightly modified versions of the residual blocks
in ResNet [He et al. 2016], where batch normalization and 1×1
convolutions with residual connections are added to these residual
blocks. [Rebuffi et al. 2018] proposed several improvements over this
module. They modified the series implementation of the residual
adapter to obtain a parallel adapter, where the input to the convo-
lutional blocks of the residual block is processed in parallel with
the adapter convolutions and fed back to the original branch. They
also investigated where to place the adapter layers in the ResNet to
achieve the best performance. Finally, in VL-Adapter [Yi-Lin Sung
2022], the authors experimented with adapter layers in vision and
language joint tasks. They added adapter modules consisting of
downsampling and upsampling layers to the transformer architec-
ture for parameter efficient fine-tuning.

Our approach consists of adapter modules that we attach to inver-
sion models. Our encoder adapter module is similar to the mapping
networks in StyleCLIP-LM. However, in these adapter modules, we
modulate intermediate image feature maps that are extracted from
the inversion model. After the modulation, the feature maps are
fed back to the inversion model to be processed further. With this
essential idea, we are able to add a text conditional branch to the
existing GAN inversion models while preserving its unconditional
inversion capabilities.

3 THE APPROACH

3.1 Overview of CLIPInverter
Our text-guided image editing framework includes two separate
modules, namely CLIPAdapter and CLIP Remapper, each playing a
different role in obtaining the desired edit. CLIPAdapter involves
CLIP-conditioned adapter layers for the GAN inversion process,
which are used for finding semantic editing directions in the latent
space alongwhich the given input image ismanipulated. CLIPRemap-
per then performs a final refinement over the predicted latent code
of the output image considering the CLIP embedding of the input
text prompt to further improve the manipulation accuracy as well
as the perceptual quality.

Given an input image xin and a desired target description ttarget,
the goal of our CLIPInverter approach is to manipulate the input
image and synthesize an output image xout such that the end result
reflects the attributes described in the text (e.g., hair color, age,
gender), while preserving the identity of the subject present in the
original image or any other features not relevant to the description.
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(a) Architectural details of CLIPAdapter. Our text-guided image en-
coder network inherits the structure of e4e, and makes it conditional
on CLIP embedding of the target text. This is achieved by shallow map-
ping networks at three different scales to better align the multi-modal
semantic space of CLIP model with the W+ space of StyleGAN2, whose
outputs control the prediction of residual codes through AdaGN layers.

(b) Architectural details of CLIPRemapper. Our refinement module consists
of MLPs that predict a residual latent code solely based on the CLIP embedding
of the target description. This residual is blended with the residual predicted by
the CLIPAdapter module, providing a corrected (better aligned) residual latent
code which is used to synthesize the final manipulated image via the pre-trained
StyleGAN2 generator.

Fig. 3. CLIPAdapter and CLIPRemapper modules of our CLIPInverter framework. Our text-guided image editing framework includes two key modules,
CLIPAdapter and CLIP Remapper. CLIPAdapter employs CLIP-conditioned adapter layers within the GAN inversion process to find the semantic editing
direction in the latent space. CLIPRemapper further refines the predicted edit direction to improve the manipulation accuracy again based on the CLIP
embedding of the input text prompt.

Assuming that we have access to a StyleGAN2 [Karras et al. 2020]
generator 𝐺 that can synthesize images from a particular domain,
we cast this text-guided manipulation task as finding a mapping
of the input image xin and the target text prompt ttarget to a latent
code w∗ ∈ W+ in the latent space of 𝐺 so that when decoded it
generates the manipulation result as xout = 𝐺 (w∗).

We perform the latent space mapping in two steps, using the un-
conditional and the conditional branches of the text-guided encoder,
which we obtain by attaching CLIPAdapter to a pretrained image
inversion network, namely encoder4editing (e4e) [Tov et al. 2021].
We first map the input image xin to its latent code w through the
pretrained encoder e4e. We then compute a residual latent vector
Δw through the conditional branch, which processes both the input
image and the CLIP model [Radford et al. 2021] embedding of the
textual description. The final image xout is synthesized by pass-
ing the aggregated latent code first through the refinement module,
w∗ = CLIPRemapper(w+Δw), then through the generator network,

which is a pretrained StyleGAN2 [Karras et al. 2020] generator. CLIP-
Inverter applies one final correction to the latent code by predicting
latents based on the CLIP embedding of the target caption ttarget.
Then, the predicted latent is blended with the previously inverted
latent code depending on a learnt interpolation coefficient 𝛼 .
In the following, we describe the details of the key modules of

CLIPInverter and the loss functions we utilize during training.

3.2 CLIPAdapter: CLIP-Guided Adapters for Latent Space
Manipulation

Fig. 3 (a) shows the architecture of our proposed text-guided encoder,
which follows the architecture of e4e with attached lightweight
adapters that enable us to incorporate the textual descriptions. The
original e4e architecture maps the input image to feature maps
at three levels – coarse, medium and fine. We introduce Adaptive
Group Normalization (AdaGN) layers in CLIPAdapter, replacing the
Instance Normalization in the AdaIN [Huang and Belongie 2017]
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layers to modulate these features using features obtained from the
CLIP [Radford et al. 2021] embedding of the target description.
CLIPAdapter also employs shallow mapping networks, one for

each level, to better align the multi-modal semantic space of the
CLIP model with theW+ space of StyleGAN2. Specifically, we feed
the text embedding obtained from the CLIP model to a multi-layer
perceptron (MLP) which predicts the scale and shift parameters
of the subsequent AdaGN blocks. Given the image features from
the coarse, medium, and fine layers of the encoder, the AdaGN
blocks perform feature modulation such that the outputs control
the prediction of the residual latent codes.

The design philosophy behind our encoder architecture is to have
adapter layers in a pretrained network that can identify visual fea-
tures relevant and irrelevant to the manipulation task in both image
and text-specific manner in computing the residual latent code to
identify the manipulation direction in theW+ space. Specifically,
we factorize the layers of the e4e network into two groups: e4ebody
and e4em2s. While e4ebody includes the convolutional backbone lay-
ers and it extracts a feature pyramid consisting of feature maps
from coarse, medium and fine levels, e4ebody consists of small con-
volutional mapping networks that transforms these feature maps to
the latent styles in the W+ space. We insert CLIPAdapter between
e4ebody and e4em2s.
More formally, in order to manipulate a given image xin based

on a text prompt ttarget, we start with obtaining the latent code w
of the original image in the W+ latent space of StyleGAN2 [Karras
et al. 2020] via e4e:

w = e4e(xin) ∈ R18×512 . (1)

To perform semantic edits on xin to reflect the desired target
look, we utilize the text-conditioned branch of our encoder network,
which takes both the input image and the target textual description
as input and outputs the residual latent code. During this process,
we first extract intermediate feature maps ci from the body layers
of the encoder network, e4ebody:

ci = e4ebody (xin) . (2)

Next, we utilize the CLIP text embedding of the target text prompt
ttarget to modulate ci, obtaining the modulated feature maps co
through our encoder-adapter layers CLIPAdapter:

co = CLIPAdapter(ci, ttarget). (3)

As the final step to predict the manipulation directions as residual
latents Δw, we pass the modulated feature maps co through the
map2style layers of e4e, e4em2s:

Δw = e4em2s (co) ∈ R18×512 . (4)

Note that the body and map2style layers of e4e are combined
to complete the pretrained encoder e4e = [e4ebody, e4em2s]. The
language conditioning happens in the adapter layers CLIPAdapter
and these layers are the only layers with trained parameters in the
inversion framework, the rest of the parameters are pretrained.

3.3 CLIPRemapper: CLIP-Guided Latent Vector
Refinement

To further enhance the quality of the manipulated image, we intro-
duce a final refinement step over the predicted latent code. As shown

in Fig. 3(b), our CLIPRemapper carries out this refinement process
by mapping CLIP text embedding of the given text prompt to the
W+ space and then using the projected text embedding to steer the
residual latent code predicted by CLIPInverter towards a direction
more compatible with the target text. Specifically, CLIPRemapper
involves shallow mapping networks for each level to better align
image with the text. The text embedding obtained from CLIP is
fed to MLPs at each stage to predict a component for latent code
correction corresponding to the caption, as follows:

∆ŵi = MLP𝑖 (ttarget). (5)

Taking into account Δŵi, we apply a further correction to the
residual latent code predicted through CLIPAdapter as:

∆wi
′ =

(𝛼𝑖 ∗ Δwi + (1 − 𝛼𝑖 ) ∗ Δŵi) ∗ ∥Δwi∥
∥𝛼𝑖 ∗ Δwi + (1 − 𝛼𝑖 ) ∗ Δŵi∥

(6)

where 𝛼𝑖 is a weighting factor which is defined as a learnable param-
eter, and Δwi

′ represents the final corrected residual latent code.
In particular, the corrected residual latent code Δwi

′ is obtained
by considering linear combination of two separate codes, the resid-
ual latent code from CLIPAdapter Δwi and the vector Δŵi, followed
by a normalization. We do not want the refinement procedure to
make substantial changes in the predicted latent code. Hence, along
with the loss functions introduced in the next section, the normaliza-
tion further enforces the final latent code Δwi

′ to be in the vicinity
of the residual latent code predicted in the previous step. We only
make the necessary changes in the semantic directions suggested
by the CLIP embedding of the target text ttarget through a simple
image composition process in the latent StyleGAN space.
CLIPRemapper effectively integrates the local inductive bias of

the target description and the desired visual characteristics for the
source image as suggested by the target description. In structured
domains such as human faces, residual latent code Δ𝑤 obtained
in an image blind manner using target description produces inter-
pretable results. This process, as demonstrated in Fig 4, combines
the manipulated image generated by CLIPAdapter with a generic

This man has gray hair, eyeglasses, and big nose. He wears necktie.

This person is smiling and has black hair.

Original w CLIPAdapter "+ ∆%" CLIPRemapper ∆&" CLIPInverter "+ ∆wʹ

Fig. 4. Visualization of the latent code correction operation via
CLIPRemapper. For two sample images, we show the initial editing re-
sults generated solely by CLIPAdapter, the generic images generated via
CLIPRemapper, and the final manipulations by CLIPInverter obtained by
the suggested correction scheme. Our refinement module works as intended,
providing edits more consistent with the target descriptions.
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image that predominantly exhibits the characteristics mentioned
in the target description, leading to further improvements on both
the manipulation accuracy and the perceptual quality. In the case
of less structured domains, e.g. birds, while Δ𝑤 may not be inter-
pretable, it still provides some improvements to the manipulations.
Additional visualizations for cat and bird images can be found in
the supplementary material.

3.4 Training Losses
We train our proposed CLIPInverter model on a training set of im-
ages pairedwith their corresponding textual descriptions {(xin, treal)}.
Specifically, we employ a cyclic adversarial training strategy [Zhu
et al. 2017] during training, which involves two separate manipu-
lation steps. In the first one, we feed in the original input image
xin along with a target textual description t𝑡𝑎𝑟𝑔𝑒𝑡 (which does not
match with the input image) to our model. This process generates
a manipulated image xout = CLIPInverter(xin, ttarget). In the cyclic
pass, we take this manipulated image xout and the original text
description treal (which describes the original input image xin) as
inputs to obtain x̂in = CLIPInverter(xout, treal). We expect x̂in to
closely resemble the original image xin by enforcing cycle consis-
tency. We obtain the target text description by rolling the minibatch,
meaning that each image will be paired with the textual description
that describes the next image in the minibatch. We train our model
with a set of loss functions. Each of these objectives are used both
in the first manipulation pass and the following cycle pass. In the
following, we only describe the losses for the first manipulation
pass for the sake of presentation simplicity.
We use L2 and LLPIPS [Zhang et al. 2018] losses to respectively

enforce pixel-wise and perceptual similarities between the input
and the manipulated image, such that:

L2 = ∥x𝑖𝑛 − x𝑜𝑢𝑡 ∥2 , (7)

LLPIPS = ∥𝐹 (x𝑖𝑛) − 𝐹 (x𝑜𝑢𝑡 )∥2 , (8)

where 𝐹 (·) denotes deep features extracted from a pretrainedAlexNet
[Krizhevsky et al. 2012] model.

Ideally, we want any manipulation to preserve the identity of the
subject in the original image. To preserve the identity, we employ
an identity loss which maximizes the cosine similarity between the
input image and the output image feature embeddings:

LID = 1 − ⟨𝑅(x𝑖𝑛)), 𝑅(x𝑜𝑢𝑡 )⟩ , (9)

where ⟨·, ·⟩ represents the cosine similarity between the feature
vectors, 𝑅 denotes a pretrained deep network. Specifically, we use
the pretrained ArcFace [Deng et al. 2019] network for human faces,
and a ResNet50 [He et al. 2015] network trained with MOCOv2
[Chen et al. 2020] for birds and cats.

We also employ the following regularization loss, which enforces
the predicted latent codes to be close to the average latent code
of the generator, and shown to improve overall image quality in
previous work [Richardson et al. 2021], such that:

Lreg = ∥w∗ − w∥2 , (10)

where w∗ and w are the aggregated and the average latent codes,
respectively.

Lastly, to enforce the similarity between the output image and
the target description, we employ a directional CLIP loss [Gal et al.
2021]. Rather than directly minimizing the distance between the
generated image x𝑜𝑢𝑡 and the text prompt t𝑡𝑎𝑟𝑔𝑒𝑡 in the CLIP space,
directional CLIP loss aligns the direction from the input image x𝑖𝑛
to the manipulated image x𝑜𝑢𝑡 with the direction from the original
text description t𝑟𝑒𝑎𝑙 to the target text description t𝑡𝑎𝑟𝑔𝑒𝑡 :

Δ𝑇 = 𝐸CLIP,T
(
t𝑡𝑎𝑟𝑔𝑒𝑡

)
− 𝐸CLIP,T (t𝑟𝑒𝑎𝑙 ) ,

Δ𝐼 = 𝐸CLIP,I (x𝑜𝑢𝑡 ) − 𝐸CLIP,I (x𝑖𝑛) ,

Ldirection = 1 − Δ𝐼 · Δ𝑇
|Δ𝐼 | |Δ𝑇 | , (11)

where 𝐸CLIP,T and 𝐸CLIP,I are the text and image encoders of CLIP,
respectively.

Our final loss function for the firstmanipulation pass is aweighted
sum of the objectives:

Lmanipulation = 𝜆1L2+𝜆2LLPIPS+𝜆3LID+𝜆4Lreg+𝜆5Ldirection ,
(12)

where each 𝜆𝑖 determines the weight of the corresponding objective.
The total loss including the first manipulation and the follow-up
cycle passes is the following:

Ltotal = Lmanipulation + 𝜆6Lcyclic , (13)

whereLcyclic is the cyclic consistency loss, which contains the same
loss terms as Lmanipulation in which x𝑜𝑢𝑡 is replaced with x̂𝑖𝑛 , and
𝜆cycle is the weight for this cyclic loss.
During training, we follow a multi-stage regime. We first train

the CLIPAdapter (without using CLIPRemapper). Once these are
fully trained, we freeze the weights of CLIPAdapter weights and
train the CLIPRemapper while optimizing for the CLIP loss along
with the L2, LPIPS and ID losses. For the LPIPS and L2 losses, we
also include the loss between images generated with and without
CLIPRemapper which ensures that the CLIPRemapper does not
change the images by a large amount. In addition, we also include
a L2 regularization loss on the interpolation coefficients (lambdas)
such that the amount of interpolation between two latent codes
does not change the original code by a large amount. This is also
observed to remove artifacts in the generated images.

4 EXPERIMENTAL EVALUATION

4.1 Datasets
We conduct extensive evaluation on a variety of domains to illus-
trate the generalizability of our approach. We use the Multi-Modal
CelebA-HQ [Lee et al. 2020; Xia et al. 2021a] dataset to train our
model on the domain of human faces. This dataset consists of 30,000
images along with 10 textual descriptions for each image. We follow
the default train/test split, using 6000 images for testing and the
remaining for training. For the birds domain, we use the CUB Birds
dataset [Wah et al. 2011], which contains 11,788 images in total,
including 2933 images for testing, along with 10 captions for each
image. Finally, for the domain of cat faces, we use the AFHQ-Cats
dataset [Choi et al. 2020] which contains a total of 5653 images,
including 500 for testing. The captions for this dataset are generated
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using the approach mentioned in [Nie et al. 2021] leveraging the
CLIP [Radford et al. 2021] model.

4.2 Training Details
We use two pre-trained models trained on our datasets: StyleGAN2
generator and 𝑒4𝑒 encoder. Keeping the weights of these models
frozen, we train CLIPInverter using the cyclic adversarial training
scheme described in the previous section. The mismatching captions
are sampled in such a way that matching caption for an image is
sampled 25% of the time during training. In our experiments, for
the CLIPAdapter, we empirically set 𝜆1 = 1.0, 𝜆2 = 0.6, 𝜆3 = 0.1,
𝜆4 = 0.005, 𝜆5 = 1.0, 𝜆6 = 1.0 and the learning rate to 0.0005.
For CLIPRemapper, we increase the weight of the identity loss to
𝜆3 = 0.5, and totally exclude the regularization loss during training.
We initialize the linear coefficient 𝛼𝑖 ’s with 0.05 and train them to-
gether with the parameters of CLIPRemapper. We train CLIPAdapter
for 200k iterations on a single Tesla v100 GPU, which takes about
6 days and CLIPRemapper for 20k iterations which takes about a
day.

4.3 Evaluation Metrics
Quantitative analysis of the language-guided image manipulation
task is a challenging matter. The quality and the photorealism of the
generated images can be evaluated with Fréchet Inception Distance
(FID) [Heusel et al. 2017]. However, there is no established way to
evaluate the manipulation accuracy of a model. It is crucial that
an effective model should only alter the attributes specified in the
target text prompt, while preserving the original attributes for the
rest of the input image. Hence, we also use the ID similarity [Deng
et al. 2019] to assess the identity preservation.
To evaluate the model accuracy in terms of these aspects, we

propose two metrics: Attribute Manipulation Accuracy (AMA) and
CLIP Manipulative Precision (CMP). Attribute Manipulation Accu-
racy measures how accurately a model can apply single attribute
manipulations. For face images, we train an attribute classifier using
the images and their attribute annotations from the CelebA [Liu
et al. 2015] dataset, following [Nie et al. 2021]. In terms of the val-
idation accuracy of the classifier on different attributes, we select
15 of the best performing attributes, such as blond hair, chubby,
mustache (see the appendix for the full list of attributes), out of 40
that are included in CelebA. Here, we have two versions of the AMA
score. AMA-Single measures the accuracy of single attribute manip-
ulations using our model. To evaluate this, we generate 50 image
manipulations for each of the 15 selected attributes, resulting in a
total of 750 images. For each manipulation, we employ pre-defined
text prompts that specifically mention the attribute of interest, such
as “This person has blond hair”. The accuracy is then determined by
assessing how well the generated images align with the intended
attribute manipulation. We evaluate the accuracy of these manipula-
tions using the attribute classifier and take the mean of the accuracy
across all the attributes to obtain the final AMA score for that model.
AMA-Multiple evaluates the accuracy of multiple attribute manip-
ulations achieved by our model. We generate target descriptions
that involve combinations of two or three attributes and perform 50
image manipulations for each combination, resulting in a total of

350 images. We consider the manipulation successful only when the
resulting changes can be accurately classified by the corresponding
attribute classifiers. In this context, a classification is deemed correct
if the attribute score surpasses a threshold of 0.90.
For cat and bird images, we use CLIP as a zero-shot classifier to

calculate the AMA. We employ 30 attributes present in the AFHQ-
Cats [Choi et al. 2020] and sample 40 attributes out of the 273
attributes present in the CUB [Wah et al. 2011] dataset. For each
selected attribute, we generate template based captions covering
all the classes in the category that the attribute belongs to. Then,
we prompt CLIP with the output image and the generated captions
to obtain similarity scores for each caption. The manipulation then
is successful if the caption with the correct label has the highest
probability after the softmax operation on the similarity scores.
CLIP Manipulative Precision is a modified version of the Ma-

nipulative Precision metric proposed by ManiGAN [Li et al. 2020]
that uses the pre-trained CLIP [Radford et al. 2021] image and text
encoders. CMP measures how aligned the synthesized image is with
the target text prompt ttarget and how well the original contents of
the input image are preserved. It is defined as

CMP = (1 − diff) ∗ sim, (14)

where diff is the L1 pixel difference between the input image xin
and the output image xout, and sim is the CLIP similarity between
the output image xout and the target textual description ttarget. We
calculate the CMP for each of the images generated for the AMA
score and take their average to obtain the final CMP score for the
corresponding model.

4.4 Qualitative Results
In Fig. 5, we show that our method can manipulate images from
very different domains such as human faces, cats, and birds. Given
an input image, we manipulate it by just providing a natural textual
description highlighting the desired edits. As can be seen in the
figure, the target descriptions can specify more than one attribute.
For instance, one can simultaneously apply lipstick while changing
the hair style of a woman, or can alter the attitude and appearance
of a cat at the same time.
Our method can give plausible results independent of the com-

plexity of the provided target description. For instance, in Fig. 6, we
present the outcomes of our approach obtained by taking into ac-
count compositions of different visual attributes. They demonstrate
that our method can deal with the provided compositions, and make
the necessary changes in the original input images mentioned in
the descriptions to its full extent.

In Fig. 7, we demonstrate that predicting residual latent code for
a given target description has the advantage that one can continu-
ously interpolate between the original image and the final result,
which allows users to have control over the degree of changes made
during the manipulation process. For example, the appearance of
the subjects smoothly changes to reflect the increase in the intensity
of the lipstick, and the color of the cats and the bird slightly changes.

To some extent, our approach can also perform edits in a zero-shot
setting by using descriptions never seen during training. The key
to this ability lies in the use of the CLIP-based text guided adapters
which enable to align the visual and the textual domains and map
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He is smiling and has gray hair, high cheekbones, 
eyeglasses, double chin, and bags under eyes.

She has bangs. She is young and wears lipstick.

This woman is attractive and has arched eyebrows, 
straight hair, and blond hair.

An old norwegian forest cat

A grumpy elderly british shorthair cat

A fearful cat with grey hair

This smaller bird is bright red and has black wings.

This is a small bird with green, yellow and blue on 
the breast, cheek patches, and crown.

This bird is brown with yellow and has a long, 
pointy beak.

Fig. 5. Qualitative manipulation results.We show sample text-guided manipulation results on human faces (left), cat images (middle), and bird images
(right). Our approach successfully makes local semantic edits based on the target descriptions while keeping the generated outputs faithful to the input
images. The images displayed on the left side are the inversion results obtained with the e4e encoder.

Original Smiling Smiling+Chubby Smiling+Chubby+Beard

Fig. 6. More qualitative results.We provide example manipulation results
where we apply various compositions of several facial attributes as target
descriptions.

out of domain textual descriptions to a semantic editing direction
in the latent space. Hence, even the terms in the target descriptions
have not been observed for the first time, our method can make
the necessary changes in the input images if semantically similar
terms have been seen during training. For instance, in Fig. 9, we

include a number of cases where the color or the structure of the
hair is manipulated using novel descriptions that do not exist in the
training set such as curly hair, silver hair, and facial hair.
In our proposed CLIPAdapter, we employ CLIP embeddings of

the text prompt to modulate the convolutional feature maps to
predict the residual latent code, representing the changes on the
input image required to meet the desired target description. In fact,
CLIP model learns the alignment between images and text via a
contrastive learning objective and discovers a common semantic
space. Hence, our framework also allows for using exemplar images
as the conditioning element without any changes or training. In
Fig. 8, we provide some qualitative results for such image-based
manipulations performed by our proposed approach. We observe
that although no further training is done by considering reference
images instead of target description, our model achieves a good per-
formance on transferring the appearance of the provided reference
images to the input images.

We refer readers to the supplementary material for more manip-
ulation results.
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This person is young and has brown hair. This person has mustache.

The person has bags under eyes. She has wavy hair. She is wearing lipstick. She is young.

This bird has a small head, a light grey belly and brown wings with long skinny black tarsus. This bird has wings that are blue and has a white belly.

This small bird has a blue top and tail, and a small, straight beak that is pointed. This bird is gray, yellow, and orange in color, with a light colored beak.  

An elderly cat with grey hair. A british shorthair kitty.

An old cat. A cat with ginger hair.

Fig. 7. Continuous manipulation results. We show that starting from the latent code of the original image and walking along the predicted residual latent
codes, we can naturally obtain smooth image manipulations, providing control over the end result. For reference, we provide the original (left) and the target
descriptions (right) below each row.

4.5 Qualitative Comparisons to Other Text-guided
Manipulation Methods

We compare our approach with various existing methods, includ-
ing TediGAN [Xia et al. 2021a], StyleCLIP [Patashnik et al. 2021],
StyleMC [Kocasari et al. 2021] and HairCLIP [Wei et al. 2022]. For
StyleCLIP, we use the latent optimization basedmodel StyleCLIP-LO,
and for TediGAN, we use the CLIP-based optimization approach
(TediGAN-B). In all of our experiments, we use the public implemen-
tations provided by the authors. For HairCLIP, we slightly modify
its neural architecture and train it accordingly. In the original paper,
they do consider different conditioning vectors for the mapper mod-
ules encoding hairstyle and hair color as they refer to details from

different scales. Since, we focus on a generic text-guided manipula-
tion process where it is hard to separate the textual terms into fine,
mid and high-level attributes, we let the embedding of the whole
target description suggested by CLIP text encoder to condition the
mappers equally. All of these approaches use StyleGAN2 as a frozen
generator and utilize the CLIP embedding to measure the image and
text similarity.

In Fig. 10, we provide some qualitative comparisons between our
method and the baselines on a number of human face images. As
can be seen from the figure, our approach gives more accurate edits
as compared to the existing methods, especially for captions that
describe multiple attribute manipulations. For instance, for the first
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Fig. 8. Image-based manipulation results. Our framework allows for using a reference image as the conditioning input for editing. In the figure, these
reference images are given at the top-right. Results on different domains illustrate that our model can transfer the look of the conditioning images to the
provided input images.

Original Curly Hair Silver Hair Facial Hair

Fig. 9. Additional manipulation results with out-of-distribution train-
ing data. We demonstrate that our CLIPInverter method can perform
manipulations with target descriptions involving words never seen during
training but semantically similar to the observed ones.

image, our model is able to make meaningful changes to the original
input image to reflect the look depicted in the target description,
and apply the gender change as well as changes in the eyebrows,
hair, eyes, lips and the outfit. For the second input image, our model
is able to generate the smile and the lipstick while most of the other
methods fail to apply both changes at the same time. In the last two
examples, our manipulation results again reflect the given target
descriptions – much better than those of the competing approaches.
Our method manipulates the gender, hair color, eyebrows, age of
the man and applies makeup. Similarly, it generates a smile for the
woman andmakes her wear a jacket, which is inline with the necktie
mentioned in the description. Similarly, in Fig. 11, we compare our
results with those of the TediGAN-B, StyleCLIP-LO and HairCLIP
methods on bird and cat images. Like the human faces, our model is

able to generate visually more pleasing and relevant results than the
competing approaches. For instance, our model is able to capture
the yellow-greenish color mentioned in the description for the bird
in the third row and the fearful look for the cat in the first row
while other methods result in poor manipulations. For birds and
cats, we could not provide any comparison against StyleCLIP-GD
and StyleMC as their codebase use a different implementation of
the StyleGAN and they do not provide pre-trained models for these
datasets. In the supplementarymaterial, we provide additional visual
comparisons.

4.6 Quantitative Comparisons to Other Text-guided
Manipulation Methods

We quantitatively compare our approach to the same approaches
that are compared in the qualitative comparisons, namely Tedi-
GAN [Xia et al. 2021a], StyleCLIP-LO and StyleCLIP-GD [Patashnik
et al. 2021], StyleMC [Kocasari et al. 2021] and HairCLIP [Wei et al.
2022]. We use the four metrics mentioned in Section 4.3 (Fréchet
Inception Distance (FID), Attribute Manipulation Accuracy (AMA),
CLIP Manipulative Precision (CMP)) and Identity Similarity (ID) for
these quantitative comparisons. The official PyTorch implementa-
tion [Seitzer 2020] is utilized to calculate the FID scores. The AMA
and the CMP scores are calculated using the procedure described in
Section 4.3.

Table 1 shows the quantitative comparisons for our model against
various state-of-the-art approaches. TediGAN-B achieves fairly good
FID and CMP scores. However, from the qualitative results, we
observed that TediGAN-B exploits adversarial ways to optimize
the CLIP similarity without changing the input pixels much while
failing to apply the manipulations and producing distorted images.
While performing well in terms of either one or two metrics,

the competing approaches usually fail to be competitive across all
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Original TediGAN-B StyleCLIP-LO StyleCLIP-GD StyleMC HairCLIP Ours

This person has bushy eyebrows, pointy nose, black hair, bags under eyes, and big lips. He wears necktie.

She has mouth slightly open, and high cheekbones. She is smiling and is wearing lipstick.

The woman has arched eyebrows, and blond hair and is wearing heavy makeup, and lipstick. She is attractive, and young.

He wears necktie. He has bushy eyebrows, mouth slightly open, bags under eyes, big nose, and high cheekbones. He is smiling.

Fig. 10. Comparison against the state-of-the-art text-guided manipulation methods. Our method applies the target edits mentioned in the given
descriptions much more accurately than the competing approaches, especially when there are multiple attributes present in the descriptions.

four metrics. StyleCLIP-LO is able to achieve a fairly comparable
CMP, since it optimizes the CLIP similarity for each instance, and a
good FID score but fails to apply the given attribute manipulations
accurately. StyleMC also achieves a good FID score since it finds
directions in the S space. However, it also fails to output accurate
manipulations. Even though StyleCLIP-GD performs better than
these two models, its performance still falls behind the performance
of our approach. Finally, HairCLIP achieves the best scores out of
the competing approaches. The results demonstrate the superiority
of our model against HairCLIP, as our method achieve much higher
manipulation accuracies while remaining competitive in terms of
the FID and ID scores. Our approach finds a good balance for the
distortion and editability problem by applying manipulations suc-
cessfully while being comparable in terms of photorealism. Hence,
they are able to achieve good scores across all four metrics.

Table 2 presents the quantitative comparisons on the AFHQ-Cats
and the CUB datasets. Since CLIP is used as a similarity metric in
CMP and as a zero-shot classifier in AMA estimations, TediGAN-B
again achieves really good scores in these two metrics. However,
as seen from the FID scores and the results shown in Fig. 11, it

Table 1. Quantitative comparisons on the CelebA dataset. Our ap-
proach exhibits superior manipulation accuracy compared to other methods,
particularly for manipulations involving multiple attributes, while main-
taining a comparable level of perceptual quality. The best and second-best
performing models are highlighted in bold and underlined, respectively.

FID ↓ CMP ↑ AMA (Single) ↑ AMA (Multiple) ↑ ID ↑
TediGAN-B 55.424 0.285 11.286 1.142 37.97
StyleCLIP-LO 80.833 0.210 15.857 3.429 29.69
StyleCLIP-GD 82.393 0.191 33.143 11.429 57.37
StyleMC 84.088 0.187 12.143 2.857 30.05
HairCLIP 93.523 0.218 41.571 15.143 57.50
Ours 97.210 0.221 61.429 41.714 52.14

gives highly blurred and non-realistic outputs that are not actually
in line with the target descriptions. Another optimization based
method, StyleCLIP-LO, achieves worse AMA and CMP scores than
TediGAN-B, but better FID. Their loss functions allow the model
to output realistic outputs, but they fail to apply the manipulations
successfully, which can be seen in Fig. 11. HairCLIP generates images
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is particular bird has a belly that is gray and white.

Original TediGAN-B StyleCLIP-LO Original TediGAN-B Ours

is bird has a yellow head with brown and cream colored body.

is is a small yellow bird with greenish wings and a small pointed beak.

A fearful elderly cat.

A cat with ginger hair.

A kitten with white hair.

HairCLIP Ours HairCLIPStyleCLIP-LO

Fig. 11. Comparisons against other approaches on bird and cat images. As compared to TediGAN, our model generates reasonable manipulation results
which are more consistent with the given target descriptions.

Table 2. Quantitative comparisons on the AFHQ-Cats and CUB
datasets. Our approach demonstrates superior manipulation accuracy com-
pared to other methods, while also preserving a comparable perceptual
quality. The best and second-best performing models are highlighted in
bold and underlined, respectively.

AFHQ-Cats CUB

FID ↓ CMP ↑ AMA ↑ FID ↓ CMP ↑ AMA ↑
TediGAN-B 39.414 0.255 82.467 42.007 0.233 59.500
StyleCLIP-LO 18.771 0.226 48.133 19.209 0.211 27.000
HairCLIP 21.087 0.227 44.667 26.447 0.218 57.050
Ours 24.172 0.245 76.467 25.837 0.221 66.000

that are better in line with the descriptions than the aforementioned
methods. However, our approach outperforms HairCLIP by a large
margin in terms of CMP and AMAwhile having a fairly close or even
better FID values. We underlined the second best performing models
for each metric, to demonstrate the superiority of our approach
against the others, since the best performing models usually exploit
adversarial ways to optimize the CLIP similarity which yield high
CMP and AMA values or fail to apply the manipulations which yield
better FID values.
For quantitative analysis, we conduct a user study via Qualtrics

to evaluate the performance of our approach and all the other com-
peting methods. Specifically, in this user study, we focus on two
important aspects: (1) the accuracy of the edits with respect to the
given target descriptions, and (2) the photorealism of the manipu-
lated images. In our human evaluation, we randomly generate 48
questions, and divide them into 3 groups, with 16 questions each.
We make sure that at least 14 different subjects answer each of these
group of questions. To measure the accuracy, we show the users

Table 3. User study results. The table represent the average rankings of
the methods with respect to accuracy and realism, where the higher the
value is the better the method is. The participants favor the results of our
proposed model over the current state-of-the-art when the accuracy of the
manipulations is considered.

Task TediGAN-B StyleCLIP-LO StyleMC StyleCLIP-GD HairCLIP Ours

Acc. 1.848 3.401 3.526 3.611 4.015 4.598
Real. 1.218 4.604 4.282 3.609 3.544 3.743

an input image, a target description, and the manipulation results
of all of the competing methods, and ask them to rank the results
against each other with respect to how consistent the edits are to
the provided description. The participants perform this by dragging
the images into their preferred order, where the left-most position
refers to the worst result having rank order 1 and the right-most
one represents the best outcome at rank order 6. In order to avoid
any bias in the evaluation, the outputs of the methods are displayed
in random order at each time. For the questions regarding photo-
realism, we design a similar ranking task, but this time, we show
all the results in random order, and ask the participants to order
these results with respect to how realistic they look. Please refer to
the supplementary for a screenshot of our user study given to the
participants.
Table 3 summarizes the results of our study where the average

ranking scores are reported. We find that in terms of the accuracy,
the human subjects prefer our proposed method against all the com-
peting approaches. That is, our method makes only the necessary
edits in the input images with respect to the given target descrip-
tions in a precise manner. HairCLIP and StyleCLIP-GD give the
next most accurate results following our model. In terms of pho-
torealism, our results are also superior than these two approaches,
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Ours w/o Perceptual LossesOurs w/ Global CLIP LossOriginal Ours w/o Cycle Pass Ours w/o CLIPRemapper Ours

is man has gray hair.

This person has big nose, bangs, and straight hair. She is smiling. She wears lipstick, and earrings.

Ours w/o CLIPAdapter

Fig. 12. Qualitative results for the ablation study. The global CLIP loss leads to unintuitive and unnatural results. Without perceptual losses, unwanted
manipulations occur. Without the cycle pass or CLIPRemapper, we are not able to apply all the desired manipulations.

indicating that our results are both accurate and photo-realistic.
That said, the human subjects find the photorealism of the results
of the concurrent StyleMC and StyleCLIP-LO models significantly
better. However, the accuracy questions indicate that both StyleMC
and StyleCLIP-LO have difficulty in manipulating the given input
images in regard to the target descriptions, in contrast to our pro-
posed model. StyleMC and StyleCLIP-LO, in general, make minimal,
mostly insufficient changes in the input images (as also can be seen
from Fig. 10), and thus do not degrade the photorealism much.

4.7 Ablation Study
During training our model, we leverage different loss terms. In order
to analyze the contributions of these loss terms, we have performed
an ablation study where we either remove or modify some of these
loss terms during training. We provide visual comparisons between
these models separately trained on different loss terms in Fig 12.
Firstly, we employ the directional CLIP loss following [Gal et al.

2021], to better enforce the image and description similarity. Com-
pared to the global CLIP loss, which directly minimizes the distance
between the manipulated image x𝑜𝑢𝑡 and the text prompt t𝑡𝑎𝑟𝑔𝑒𝑡 in
the CLIP space, the directional CLIP loss aligns the directions be-
tween the real and target descriptions and input and output images.
As can be seen in the second column of Fig 12, the global CLIP loss
suffers from artificial-looking manipulations and results in poorly
constructed facial attributes as compared to the directional CLIP
loss.

Secondly, in order to preserve the features and the details of the
input image in the areas that we do not wish to modify, we employ
the perceptual L2 and the LLPIPS losses between the input and the
output images. In theory, these perceptual loss terms contradict the
directional CLIP loss since the CLIP loss is trying to enforce the
image & text similarity by manipulating the pixel values. In order to
analyze the contribution of these perceptual terms, we have reduced
the weights of these loss terms in the overall objective. The third

column in Fig. 12 shows a manipulation example from this experi-
ment. As can be seen, the smile in the first row is also modified, and
the model manipulates the hair style to curly hair in the second row
even though this manipulations were not mentioned in the target
description. This experiment demonstrates the necessity of these
perceptual loss terms in order to prevent unwanted manipulations.

Thirdly, we employ a cyclic-adversarial training strategy, where
we first manipulate the image with a mismatching caption, and
then recover it by manipulating the output of the first pass with the
matching target description. The fourth column in Fig. 12 shows an
example manipulation from the experiment where we remove this
cyclic training regime. Even though the output is visually similar to
the output from our full model, we observe that the cyclic consis-
tency loss helps with the preservation of the identity as well as the
manipulation accuracy.

Finally, we utilize a CLIP-guided correction module CLIPRemap-
per to apply the manipulations more accurately and increase the
image fidelity. We see from the last two columns of the figure that
without CLIPRemapper, the model is not able to apply all of the
specified manipulations accurately, like the hair color in the first
row or the earrings in the second row.
Table 4 shows the quantitative analysis of the experiments de-

scribed above. The metrics verify that the global CLIP loss performs
much worse in terms of attribute manipulations. This model is able
to achieve a high CMP since it directly optimizes image and text
similarity in the CLIP space, rather than aligning semantic direc-
tions. When we reduce the weight of the perceptual losses, the
model is able to apply the manipulations with very high accuracy.
However, this comes with the price of perceptual quality as FID
suggests, and unwanted manipulations as CMP suggests. Adding
the cycle pass gives us a better supervision signal to train the model,
as the improvements in the accuracy and the CMP suggest. Without
CLIPAdapter, our model is not able to achieve great accuracy scores,
suggesting that the adapter layers yield the residual latent codes
corresponding to semantic directions successfully. Finally, adding
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Table 4. Quantitative analysis of the ablation study.We have performed
a quantitative analysis of the ablation study where we calculated the metrics
for each of the described experiments for ourmodel. The results demonstrate
that our model finds a good balance for applying manipulations without
decreasing the perceptual quality of the generations. The best and second-
best performing models are highlighted in bold and underlined, respectively.

FID ↓ CMP ↑ AMA ↑
Ours w/ Global CLIP Loss 83.404 0.221 25.429
Ours w/o Perceptual Losses 105.432 0.194 65.571
Ours w/o Cycle Pass 85.851 0.215 40.857
Ours w/o CLIPAdapter 89.244 0.202 41.571
Ours w/o CLIPRemapper 88.395 0.216 53.28
Ours 97.210 0.221 61.429

CLIPRemapper to our model highly boosts the manipulation per-
formance, with slightly decreasing photorealism in terms of FID.
Overall, these quantitative results demonstrate that the combination
of the loss functions and the light-weight modules we use allows
our model to perform well across all metrics and apply manipula-
tions accurately while preserving the photorealism and preventing
unwanted changes.

4.8 Limitations
In our approach, the CLIPAdapter module can be integrated with
any inversion network model. Consequently, the limitations of the
underlying inversion network are inherited by our approach. For
instance, when employing the e4e, the network may struggle to find
accurate latent codes for inputs with unusual poses or challenging
lighting conditions. Hence, the reconstructions occasionally result
in alterations to identity and the loss of certain details. Despite these
limitations, our approach remains capable of generating outputs that
align with the provided textual descriptions. It is important to note
that the output images are consistent with the reconstructed im-
ages, rather than the input images themselves. Fig. 13 demonstrates
manipulation results using our approach with various challenging
inputs. As observed, our method successfully applies the manipu-
lations with respect to the desired reconstructions, however, some
details present in the input images, such as shadows or specific
lighting conditions, may not be fully preserved during the uncondi-
tional inversion phase. It is worth mentioning that this is a common
limitation of current GAN-based editing methods, as many of these
approaches rely on a pre-trained encoder like e4e to obtain an initial
inversion of the inputs. For a comprehensive comparison of com-
peting approaches under these challenging cases, we refer readers
to the supplementary material.
Additionally, the effectiveness of our method mainly lies in the

proposed text-guided image encoder CLIPInverter, which estimates
the residual latent code to capture the desired changes. Since CLIP-
Inverter is trained by using a set of training images paired with
corresponding textual descriptions, we observe that results of our
approach might be affected by the biases that exist in the training
data. For instance, Multi-Modal CelebA-HQ dataset containing hu-
man face images consists of 10 descriptions for each image, but we
observe that the descriptions are not diverse, often using similar

Original Inversion Output Original Inversion Output

She has mouth slightly open, arched eyebrows, blond hair, and pointy nose. 

The person has black hair, wavy hair, mouth slightly open, oval face, and big lips. 
She wears heavy makeup, and lipstick.

She is wearing heavy makeup, and earrings. She has narrow eyes, big lips, mouth 
slightly open, high cheekbones, and brown hair. She is smiling.

This woman is smiling, and attractive and has wavy hair, and high cheekbones.

Fig. 13. Limitations due to GAN inversion step. We present editing
results for various challenging inputs (left) where the inputs have different
lighting conditions, shadows then the training data. The underlying inver-
sion model struggles to capture these details in the initial inversion phase
(middle). Our approach is able to generate consistent results (right) with the
reconstructed images.

adjectives referring to certain attributes. Moreover, there is an im-
balance between the number of female and male images, causing
a bias towards a specific gender in certain attributes. When only
attributes are used in the textual descriptions without any pronouns,
unexpected gender manipulations might occur due to these biases.
As observed in Fig. 14, when we only use the description “wavy
hair”, a gender manipulation also occurs. We can alleviate this prob-
lem by using more comprehensive textual descriptions, including
additional details such as “She has wavy hair”, which yields a much
more accurate manipulation. It is an interesting future direction to
tackle the bias problem in a more systematic manner.

She has wavy hairWavy hairOriginal

Fig. 14. Limitations of our proposed CLIPInverter method. Our ap-
proach might make some undesired changes to the given input image not
mentioned in the provided textual description due to the biases that exist
in the training set. This problem can be prevented by providing more com-
prehensive descriptions.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2022.



CLIP-Guided StyleGAN Inversion for Text-Driven Real Image Editing • 17

5 CONCLUSION
In this work, we have introduced CLIPInverter, a novel text-driven
image editing approach. It can be used to manipulate an input image
through the lens of StyleGAN latent space solely by providing a
target textual description, which is much more intuitive than the
commonly-used user inputs such as sketches, strokes or segmen-
tation masks. The key component of our approach is the proposed
text-guided adapter module called CLIPAdapter, which modulates
image feature maps during the inversion to extract semantic edit
directions with respect to the provided target description. Moreover,
we suggest a text-guided refinement module that we refer to as
CLIPRemapper, which performs an additional correction step on
the predicted latent code from CLIPAdapter to further boost the
accuracy of the performed edits in the input image. Our model does
not require an instance-level latent code optimization or a separate
training for specific text prompts as done in the prior work, and
thus provides a faster alternative to the approaches that exist in the
literature.
Our approach is not limited to a specific domain in that it only

needs a pretrained StyleGAN model. As our experimental analysis
on several different datasets illustrate, our model can handle the se-
mantic edits through textual descriptions for very different domains.
Moreover, thanks to the shared semantic space provided by the CLIP
[Radford et al. 2021] model between images and text, our model
can also be used to perform manipulations conditioned on another
image or a novel textual description that has not been seen during
training. Our experiments demonstrate significant improvements
over the previous approaches in that our model can manipulate
images with high accuracy and quality for any description.

Furthermore, it is important to highlight that our proposed frame-
work is not limited to StyleGAN and can be seamlessly integrated
into other deep generative models that operate on a latent space
representation. Although our current implementation focuses on
StyleGAN, the key contributions of our framework, namely CLI-
PAdapter and CLIPRemapper, are not specific to StyleGAN and can
be easily adapted to other GAN architectures. This flexibility opens
up opportunities for leveraging our framework in conjunction with
recent advancements in latent space extension, such as dual-space
GANs which exhibit enhanced disentanglement of style and content
information [Kwon and Ye 2021; Xu et al. 2022]. By incorporating
our framework into these models, we can further enhance manipula-
tion accuracy and broaden the range of images that can be generated
based on textual descriptions.
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1 DETAILS ABOUT THE AMA SCORE

Our proposed Attribute Manipulation Accuracy (AMA) score mea-
sures how accurately a model can apply single attribute manipu-
lations. It requires requires the availability of pretrained attribute
classifiers trained for a set of attributes. As mentioned in the main
paper, we hand-selected these attribute classifiers based on their
robustness.
For the CelebA dataset [Lee et al. 2020; Xia et al. 2021], we have

used the following attributes in calculating the AMA score:

• blonde hair
• bushy eyebrows
• chubby

• double chin
• eyeglasses
• goatee

• gray hair
• heavy makeup
• male
• mouth slightly open
• mustache

• rosy cheeks
• smiling
• wearing lipstick
• wearing necktie

Here is the complete list of attributes we used to calculate the
AMA score for the CUB dataset [Wah et al. 2011]:

• curved bill shape
• blue wing
• rufous wing
• red wing
• olive upperparts
• iridescent underparts
• pink underparts
• blue back
• rounded tail tail shape
• blue upper tail
• iridescent upper tail
• yellow upper tail
• orange upper tail
• red upper tail
• spotted head pattern
• iridescent breast
• black breast
• blue throat
• purple throat
• pink eye
• orange eye

• red eye
• white forehead
• black under tail
• rufous nape
• grey nape
• yellow nape
• rufous belly
• grey belly
• black belly
• broad-wings wing
shape

• long-legged-like shape
• striped back pattern
• spotted belly pattern
• grey primary
• olive leg
• pink leg
• white leg
• purple bill
• black bill
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Fig. 1. Screenshot of a question from the user study. The participants are asked to rank the choices in the specified order.

For the AFHQ-Cats [Choi et al. 2020] dataset, the set of attributes
selected for the AMA score is as follows:

• a kitten or kitty
• an elderly or old cat
• bengal cat
• black
• bombay cat
• bored
• british shorthair cat
• brown
• calico cat
• cinnamon
• cream
• egyptian cat
• fearful
• ginger
• grey

• grumpy
• happy
• himalayan cat
• maine coon cat
• norwegian forest cat
• persian cat
• playful
• ragdoll cat
• savannah cat
• scottish fold cat
• siamese cat
• siberian cat
• singapura cat
• snowshoe cat
• white

2 USER STUDY

We have used the Qualtrics platform to perform the user study. We
randomly sampled images and descriptions to generate 48 manipula-
tions in total (24 each for accuracy and realism). These 48 questions
are then divided into 3 groups of 16 questions. To present a study
suitable for participants’ attention span, a single participant is given
only one group of questions. In each question, the participants rank
the outputs of each model in the specified order. A screenshot of a
question from the user study is given in Fig. 1.

3 CLIPADAPTER IN DIFFERENT ENCODER NETWORKS

CLIPAdapter is a light-weight adapter module that could be attached
to any inversion network, as long as the encoder network processes
some image feature maps during the inversion phase. CLIPAdapter
modulates these feature maps using the CLIP embeddings of the
description 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 and we pass them through the rest of the encoder
network. To support our claim, we trained CLIPInverter on different
encoder networks, namely pSp [Richardson et al. 2021], e4e [Tov
et al. 2021] and ReStyle [Alaluf et al. 2021]. Table 1 shows the quan-
titative comparisons between the pSp, e4e and ReStyle based models

on the face images. All of the models achieve similar performance
in terms of FID and CMP, but the e4e based model achieves superior
AMA compared to the other models. Fig. 2 demonstrates the manip-
ulation results obtained with different inversion networks equipped
with the proposed CLIPAdapter module. Both models are able to
edit images successfully. We observe that the e4e based model is
able to achieve slightly more accurate outcomes. Therefore, we have
used the e4e based network in our final model.

Table 1. Quantitative comparisons of CLIPAdapter used in different
encoder networks. The two models achieve similar scores, but e4e based

model is superior in terms of manipulation accuracy.

Encoder FID ↓ CMP ↑ AMA ↑
pSp + CLIPAdapter 93.483 0.221 54.143
e4e + CLIPAdapter 97.210 0.221 61.429
ReStyle + CLIPAdapter 96.197 0.222 50.000

4 CLIPADAPTER FOR INVERSION

In our main paper, we demonstrate that CLIPAdapter finds more ac-
curate semantic directions in the latent space for editing a provided
input image. We also examine whether similar feature modulation
scheme improves the GAN inversion for a more accurate image
reconstruction. In this setup, we used CLIPAdapter in a pre-trained
e4e [Tov et al. 2021] encoder. Instead of the CLIP text embeddings
of a target textual description 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 , we used the CLIP image em-
bedding of the input image 𝑥𝑖𝑛 to modulate the image feature maps
during the inversion process. We use a pre-trained and frozen Style-
GAN2 generator and we do not employ CLIPRemapper for this
experiment. Fig. 3 shows some comparisons between the e4e inver-
sions and inversions using our setup described above. Our approach
slightly improves upon the e4e inversions. For instance, the earrings
are more accurately represented in our inversions in the first row,
as the e4e inversions add an earring to the first image or remove
it from the second image. We see from the second row that our
approach represents rosy cheeks or the jacket/necktie better than
the e4e model. Moreover, the third row shows that the gap between
the lips are much more accurately preserved with our approach.
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ReStyle + CLIPAdapterpSp + CLIPAdapterOriginal

The person has pointy nose, brown hair, high cheekbones, and wavy hair. She wears heavy 
makeup, and earrings. She is smiling.

He has big nose, double chin, sideburns, and bags under eyes. He is chubby. He has beard.

This person has straight hair. He is young. He has beard.

The person has big nose, goatee, wavy hair, and double chin. He is smiling. He has beard.

e4e + CLIPAdapter

Fig. 2. Using different encoder networks with CLIPAdapter. CLI-
PAdapter can be attached to various inversion networks and is able to

find semantic directions in the latent space successfully, as demonstrated

by the manipulations.

Quantitative comparisons between e4e and our approach is also
given in Table 2. We use the L2, LPIPS, ID similarity, FID, KID,
PSNR and MS-SSIM metrics for these comparisons. As most of
the metrics suggest, our approach improves upon the inversion
performance of e4e, supporting our claim that our CLIP-guided
adapter can lead to more meaningful latent codes and thus more
accurate reconstructions.

Table 2. Quantitative comparisons against e4e for inversion with
CLIPAdapter. As most of the metrics confirm, our CLIPAdapter framework

improves upon the performance of the e4e network.

Model L2 ↓ LPIPS ↓ ID ↑ FID ↓ KID ↓ PSNR ↑ MS-SSIM ↑
e4e 0.047 0.198 0.493 36.120 13.288 19.119 0.619
Ours 0.046 0.199 0.487 33.826 10.860 19.194 0.622

5 ADDITIONAL QUALITATIVE RESULTS

In Fig. 4-6, we provide additional text-driven editing results of our
proposed model on human faces, cats and birds images, respectively.
Additionally, in Fig. 7-9, we provide continuous manipulations ob-
tained by our method by interpolating the predicted residual latent

code for a number of images and some target descriptions. Finally,
in Fig. 10-12, we present additional image-conditioned manipulation
results, again considering images of human faces, cats and birds,
respectively.

6 ADDITIONAL PERFORMANCE COMPARISONS

In Fig. 13, we present additional comparisons of our CLIPInverter
model against the TediGAN [Xia et al. 2021], the StyleCLIP [Patash-
nik et al. 2021], the StyleMC [Kocasari et al. 2021] and the Hair-
CLIP [Wei et al. 2022] models on the CelebA face dataset. In Fig. 14,
we present additional comparisons of our CLIPInverter against the
competing approach on the CUB bird and AFHQ-Cats datasets.

7 COMPARISONS AGAINST DIFFUSION-BASED

APPROACHES

We compare our approach against the DiffiusionCLIP [Kim et al.
2022] and Plug-and-Play [Tumanyan et al. 2023] approaches qual-
itatively and quantitatively. Table 3 shows the quantitative com-
parisons and Fig. 15 shows qualitative comparisons against these
methods on the CelebA [Liu et al. 2015] dataset. We observe that
the diffusion-based models achieve good FID scores thanks to their
strong synthesis capabilities. However, our approach is able to ma-
nipulate the imageswithmuch higher accuracy. DiffusionCLIP strug-
gles to apply all the manipulations and yields results with some
artifacts, whereas Plug-and-Play outputs cartoonish and unrealistic
looking results.

Table 3. Quantitative comparisons on the CelebA dataset against
diffusion-based models.

FID ↓ CMP ↑ AMA (Single) ↑ AMA (Multiple) ↑
DiffusionCLIP 29.280 0.243 26.000 4.857
Plug-and-Play 68.287 0.199 27.429 7.143
Ours 97.210 0.221 61.429 41.714

8 COMPARISONS AGAINST HAIRCLIP ON UNSEEN

TEXT PROMPTS

Fig. 16 showcases manipulation results achieved by CLIPInverter
and HairCLIP using textual descriptions that were not encountered
during the training of either model. Both models demonstrate re-
markable editing ability as they establish a semantic alignment with
the CLIP space, enabling them to generate plausible results even
when presented with unseen target descriptions. However, it is
worth noting that the models perform significantly better when the
descriptions are semantically similar to those in the training set.
This discrepancy becomes apparent in the last example of the figure,
where the descriptions deviate a lot from the training distribution.
To quantitative evaluate the performance change, we consider novel
compositions that do not appear in the training set, which are listed
below. Table 4 shows the results. Overall, our CLIPInverter exhibits
a superior ability to align with the CLIP space and applies manipula-
tions with higher accuracy compared to HairCLIP. Its performance
on unseen text prompt is even higher than the performance of
HairCLIP on seen text prompts.
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Original e4e Ours Original e4e Ours

Fig. 3. Using CLIP image embeddings in CLIPAdapter to modulate the feature maps. Our approach is able to achieve inversions that are more faithful

to the inputs compared to e4e, such as the earrings in the first row or the slightly open mouth in the third row.

• heavy makeup + mus-
tache

• chubby + wearing lip-
stick

• blond hair + mustache
• wearing earrings + wear-
ing necktie

• eyeglasses + smiling +
wearing earrings

• mouth slightly open +
wearing earrings + wear-
ing lipstick

• bangs + goatee + gray
hair

Table 4. Quantitative comparisons against HairCLIP on unseen text
prompts. On the CelebA dataset, we have performed experiments to eval-

uate the generalization capabilities of the methods on text prompts not

encountered during training. For the sake of completeness, we also include

the performances with previously seen prompts.

Seen Text Prompts Unseen Text Prompts
CMP ↑ AMA ↑ ID ↑ CMP ↑ AMA ↑ ID↑

HairCLIP 0.221 15.143 55.25 0.229 6.561 53.55
Ours 0.224 41.714 46.12 0.236 16.286 47.49

9 LIMITATIONS DUE TO STYLEGAN INVERSION

The common practice to edit images using pre-trained StyleGAN
models is to first invert the inputs to the latent space using a pre-
trained GAN inversion method. However, when the input images

exhibit unconventional poses, shadows, and other complex charac-
teristics, the inversion model encounters difficulties in preserving
all the intricate details. As a consequence, the manipulation results
often deviate from the original inputs. In Fig. 17, we present results
for the competing approach as well as our CLIPInverter for these
challenging cases.

10 ANALYSIS OF CLIPREMAPPER

Fig. 18 visually depicts the refinement process conducted by the
CLIPRemapper module using sample images from the cat and bird
domains. It effectively demonstrates how this proposed scheme
enhances the quality of image manipulations based on the pro-
vided target descriptions. Notably, the refinements introduced by
the CLIPRemapper module are particularly prominent in the cat
domain, which exhibits a higher degree of structural complexity
compared to the bird domain. However, it is worth noting that the
CLIPRemapper output for birds should be interpreted with caution.
Since the output corresponding to the zero latent code lies outside
the distribution, unlike the human and cat domains, any latent code
in its vicinity, including the output of CLIPRemapper Δ𝑤 , is ex-
pected to produce an out-of-distribution image. Additionally, the
CLIPRemapper output may not exhibit all the characteristics men-
tioned in the text prompt, as the module is trained subsequent to
the CLIPAdapter and primarily focuses on improving cases where
the CLIPAdapter may fall short.
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This man has bags under eyes. He is chubby. He has beard. This smiling woman has bangs.

This man has wavy hair and wears necktie. He is smiling, and young. This woman is wearing lipstick. She has eyeglasses. She is smiling.

The man has mustache, bags under eyes, big nose, goatee, and straight hair. This man is wearing necktie. He has high cheekbones. He is smiling.

The man has big nose. He is smiling, and chubby. He has beard. The woman is smiling and has bangs, brown hair, and mouth slightly open.

Fig. 4. Additional text-driven manipulation results on the human face images obtained with our CLIPInverter approach.
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A calico cat with cinnamon hair. A cat with grey hair.

A grumpy cat. A ragdoll kitty.

A fearful cat with grey hair. A kitty with ginger hair.

An elderly cat. A calico kitty.

Fig. 5. Additional text-driven manipulation results on the cat images obtained with our CLIPInverter approach.
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This small bird has a reddish brown crown and white belly. its wingbars are

white while its primaries, secondaries, and coverts are light brown and black.

This gray bird has a black cheek patch, black primaries and a black tail, while

its throat is white.

This bird is yellow with grey and has a very short beak. This bird has wings that are brown and has a yellow belly.

This tiny colorful bird has a yellow belly and short beak. This bird has a white belly and breast with a short pointy bill

This bird has wings that are green and has a yellow belly. Tiny grey and white bird with black eyes and a sharp beak

Fig. 6. Additional text-driven manipulation results on the bird images obtained with our CLIPInverter approach.
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The man has brown hair, and bags under eyes.  This man is young and has big lips, and goatee.

This attractive, and young woman has mouth slightly open, and big lips. The person has wavy hair, high cheekbones, and bangs and is wearing necklace. She is smiling.

The person has straight hair. She wears lipstick, and earrings.  This man has big nose, mouth slightly open and high cheekbones. He is wearing necktie. He is smiling.

The man has big nose, and black hair. He is young. He has beard. This smiling woman has big nose, and high cheekbones.

This woman has straight hair, big lips, and oval face and is wearing heavy makeup, and earrings. This woman has receding hairline. She wears lipstick. She is attractive.

She is attractive and has big lips. This person has straight hair. He is chubby. He has beard.

Fig. 7. Additional continuous manipulation results for some human face images. For reference, we provide the original (left) and the target descriptions (right)
below each row.
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A playful elderly cat. A cat with ginger hair.

An elderly cat with grey hair. A british shorthair cat.

A british shorthair cat with grey hair.  A fearful old cat.

A photo of a cat. A fearful calico cat with brown hair.

A fearful cat with white hair. A kitty.

A fearful old cat with black hair. A playful egyptian kitty with ginger hair.

Fig. 8. Additional continuous manipulation results for some cat images. For reference, we provide the original (left) and the target descriptions (right) below
each row.
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A white and brown bellied bird with speckled brown primaties, and a long narrow gray bill.  This bird has wings that are green and has a yellow belly.

A orange and brown bird with a orange crown on the head with a orange belly. A brown and white bird with a long tail feather and small dark eyes.

This black and white bird has white belly and breast, black throat, crown, white eyebrow with black wings.  This bird is black with white and has a long, pointy beak.

This small bird has a red body and head, black eyes and white eyerings. This bird has wings that are brown and has a yellow belly.

This small coffee colored bird, with darker stripes on his secondary wings has a pointed bill. This small bird has a red beak and a teal, brown, and white colored body.

This bird had a grey eye patch, a white belly and throat. the wings are dark grey with white wingbars. This bird has a blue crown and breast and colorful wingbars.

Fig. 9. Additional continuous manipulation results for some bird images. For reference, we provide the original (left) and the target descriptions (right) below
each row.
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Fig. 10. Additional image-guided manipulation results on the human face images, showing the original image (left), the condition image (middle), and the

manipulated image (right).
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Fig. 11. Additional image-guided manipulation results on the cat images, showing the original image (left), the condition image (middle), and the manipulated

image (right).
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Fig. 12. Additional image-guided manipulation results on the bird images, showing the original image (left), the condition image (middle), and the manipulated

image (right).
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Original TediGAN-B StyleCLIP-LO StyleCLIP-GD StyleMC HairCLIP Ours

This person wears heavy makeup, necklace. She has pointy nose, and wavy hair.

This woman has bangs, and black hair and wears necklace. She is young.

This man has gray hair, receding hairline, and big nose.

The man has wavy hair, mouth slightly open, high cheekbones, and eyeglasses.

The woman has blond hair. She wears earrings. She is smiling.

This chubby man has goatee, and receding hairline.

He has goatee, and sideburns. He wears necktie.

Fig. 13. Additional comparisons against the state-of-the-art text-driven manipulation methods on the human face images. Our method performs edits relevant

to the given target descriptions more accurately than the competing approaches.
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This bird has wings that are blue and has a white belly.

Original TediGAN-B StyleCLIP-LO

Large eyes and bright yellow breast are both eye catching features of the small bird.

The bird has a bright yellow body with a black accents on the wingbars.

A fearful elderly cat with ginger hair.

A fearful old british shorthair cat.

A fearful elderly bengal cat.

HairCLIP Ours

Fig. 14. Additional comparisons against the state-of-the-art text-driven manipulation methods on the bird and the cat images. Our method performs edits

relevant to the given target descriptions more accurately than the competing approaches.
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Original DiffusionCLIP Plug-and-play

The person has arched eyebrows and wears lipstick. She is attractive, and smiling.

She is wearing lipstick, and earrings. She has bangs, narrow eyes, high cheekbones, mouth slightly open, and 
arched eyebrows. She is smiling.

This woman has bags under eyes. She is smiling and is wearing heavy makeup, and earrings.

He has bushy eyebrows. He is young. He has beard.

The person has blond hair, and big lips. She is young. She is wearing heavy makeup.

The person has blond hair. She is wearing earrings, and lipstick.

Ours

Fig. 15. Qualitative comparions against diffusion-based text-guided editing methods. Our method performs edits relevant to the given target descriptions

more accurately and generates realistic looking images.
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Original HairCLIP Ours Original HairCLIP Ours

Emma Stone

Excited man A joyful woman

Serious man

Red hair Man with afro hair

Fig. 16. Manipulation results of HairCLIP and CLIPInverter with descriptions that are unseen during training. Our model learns a semantic

alignment with the CLIP space and is able to apply the manipulations even when the descriptions are not included in the training set.
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Original Inversion TediGAN-B

She has mouth slightly open, arched eyebrows, blond hair, and pointy nose. 

The person has black hair, wavy hair, mouth slightly open, oval face, and big lips. She wears heavy makeup, and lipstick.

She is wearing heavy makeup, and earrings. She has narrow eyes, big lips, mouth slightly open, high cheekbones, and brown hair. She is smiling.

This woman is smiling, and attractive and has wavy hair, and high cheekbones.

StyleCLIP-LO StyleCLIP-GD StyleMC HairCLIP Ours

Fig. 17. Qualitative comparisons of manipulations with out of distribution input images.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2023.



Supplementary Material: CLIP-Guided StyleGAN Inversion for Text-Driven Real Image Editing • 19

This man has gray hair, eyeglasses, and big nose. He wears necktie.

This person is smiling and has black hair.

Original w CLIPAdapter "+ ∆%" CLIPRemapper ∆&" CLIPInverter "+ ∆wʹ

This bird is brown with yellow and has a long, pointy beak

A white and brown bellied bird with speckled brown primaties, and a long narrow gray bill

This man has gray hair, eyeglasses, and big nose. He wears necktie.

This person is smiling and has black hair.

Original w CLIPAdapter "+ ∆%" CLIPRemapper ∆&" CLIPInverter "+ ∆wʹ

A british shorthair cat with grey hair

A fearful old cat

Fig. 18. Visualization of the latent code correction operation via CLIPRemapper on cats and birds images. For each sample manipulation operation,

we show the initial editing results generated solely by CLIPAdapter, the images generated via CLIPRemapper, and the final manipulations by CLIPInverter

obtained by the suggested correction scheme. Our refinement module improves the quality of the intended manipulations on both domains.
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